Drug – bio-affecting and body treating compositions – Effervescent or pressurized fluid containing – Organic pressurized fluid
Reexamination Certificate
2002-07-19
2003-10-07
Hartley, Michael G. (Department: 1616)
Drug, bio-affecting and body treating compositions
Effervescent or pressurized fluid containing
Organic pressurized fluid
C424S046000, C128S200140
Reexamination Certificate
active
06630129
ABSTRACT:
This is a U.S. patent application being filed under 37 C.F.R. 1.53(b) claiming priority to GB9921396.9 filed Sep. 11, 1999 in the United Kingdom; for which GB0014451.9 was filed Jun. 13, 2000 and GB0018654.4 was filed Jul. 28, 2000 in the United Kingdom.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a pharmaceutical formulation for use in the administration of medicaments by inhalation. In particular, this invention relates to a pharmaceutical formulation of fluticasone propionate for use in metered dose inhalers (MDI's). The invention also relates to methods for their preparation and to their use in therapy.
2. Description of the Background Art
Inhalers are well known devices for administering pharmaceutically active materials to the respiratory tract by inhalation. Such active materials commonly delivered by inhalation include bronchodilators such as &bgr;2 agonists and anticholinergics, corticosteroids, anti-allergics and other materials that may be efficiently administered by inhalation, thus increasing the therapeutic index and reducing side effects of the active material.
(6a,11b,16a,17a)-6,9-difluoro-11-hydroxy-16-methyl-3-oxo-17-(1-oxopropoxy) androsta-1,4-diene-17-carbothioic acid, S-fluoromethyl ester was described as an anti-inflammatory steroid by U.S. Pat. No. 4,335,121. This compound is also known by the generic name of fluticasone propionate and has since become widely known as a highly effective steroid in the treatment of inflammatory diseases, such as asthma and chronic obstructive pulmonary disease (COPD).
Metered dose inhalers (MDI's) are the most common type of a wide range of inhaler types and utilise a liquefied propellant to expel droplets containing the pharmaceutical product to the respiratory tract as an aerosol. MDI formulations are generally characterised as solution formulations or suspension formulations.
The most commonly used aerosol propellants for medicaments have been Freon 11 (CCl
3
F) in admixture with Freon 12 (CCl
2
F
2
) and Freon 114 (CF
2
Cl.CF
2
Cl). However, these propellants are now believed to provoke the degradation of stratospheric ozone and their use is now being phased out to eliminate the use of all CFC containing aerosol propellants. There is thus a need to provide an aerosol formulation for medicaments which employ so called ‘ozone-friendly’ propellants.
Hydrofluoroalkanes (HFAs; known also as hydrofluorocarbons or HFCs) contain no chlorine and are considered less destructive to ozone and these are proposed substitutes for CFCs. In particular, 1,1,1,2-tetrafluoroethane (HFA 134a) and 1,1,1,2,3,3,3-heptafluoropropane (HFA 227) have been acknowledged to be the best candidates for non-CFC propellants.
The efficiency of an aerosol device, such as an MDI, is a function of the dose deposited at the appropriate site in the lungs. Deposition is affected by several factors, of which one of the most important is the aerodynamic particle size. Solid particles and/or droplets in an aerosol formulation can be characterised by their mass median aerodynamic diameter (MMAD, the diameter around which the mass aerodynamic diameters are distributed equally).
Particle deposition in the lung depends largely upon three physical mechanisms:
1. impaction, a function of particle inertia;
2. sedimentation due to gravity; and
3. diffusion resulting from Brownian motion of fine, submicrometer (<1 &mgr;m) particles.
The mass of the particles determines which of the three main mechanisms predominates.
The effective aerodynamic diameter is a function of the size, shape and density of the particles and will affect the magnitude of forces acting on them. For example, while inertial and gravitational effects increase with increasing particle size and particle density, the displacements produced by diffusion decrease. In practice, diffusion plays little part in deposition from pharmaceutical aerosols. Impaction and sedimentation can be assessed from a measurement of the MMAD which determines the displacement across streamlines under the influence of inertia and gravity, respectively.
Aerosol particles of equivalent MMAD and GSD (geometric standard deviation) have similar deposition in the lung irrespective of their composition. The GSD is a measure of the variability of the aerodynamic particle diameters.
For inhalation therapy there is a preference for aerosols in which the particles for inhalation have a diameter of about 0.5 to 5 &mgr;m. Particles which are larger than 5 &mgr;m in diameter are primarily deposited by inertial impaction in the orthopharynx, particles 0.5 to 5 &mgr;m in diameter, influenced mainly by gravity, are ideal for deposition in the conducting airways, and particles 0.5 to 3 &mgr;m in diameter are desirable for aerosol delivery to the lung periphery. Particles smaller than 0.5 &mgr;m may be exhaled.
Respirable particles are generally considered to be those with aerodynamic diameters less than 5 &mgr;m. These particles, particularly those with a diameter of about 3 &mgr;m, are efficiently deposited in the lower respiratory tract by sedimentation.
It has been recently demonstrated in patients with mild and severe airflow obstruction that the particle size of choice for a &bgr;2 agonist or anticholinergic aerosol should be approximately 3 &mgr;m (Zaanen, P. et al, Int. J. Pharm. (1994) 107, 211-217, Int. J. Pharm. (1995) 114, 111-115, Thorax (1996), 51, 977-980.)
Many of the factors relevant to the MMAD of particles are relevant to droplets and the additional factors of rate of solvent evaporation, and surface tension are also important.
In suspension formulations, particle size in principle is controlled during manufacture by the size to which the solid medicament is reduced, usually by micronisation. However, if the suspended drug has the slightest solubility in propellant, a process known as Ostwald Ripening can lead to particle size growth. Also, particles may have tendency to aggregate, or adhere to parts of the MDI eg. canister or valve. The effect of Ostwald ripening and particularly of drug deposition may be particularly severe for potent drugs (including fluticasone propionate) which need to be formulated in low doses. Solution formulations do not suffer from these disadvantages, but suffer from different ones in that particle or droplet size is both a function of rate of evaporation of the propellant from the formulation, and of the time between release of formulation from canister and the moment of inhalation. Thus, it may be subject to considerable variability and is generally hard to control.
Besides its impact on the therapeutic profile of a drug, the size of aerosol particles has an important impact on the side effect profile of a drug. For example, it is well known that the orthopharynx deposition of aerosol formulations of steroids can result in side effects such as candidiasis of mouth and throat. Accordingly, throat deposition of such aerosol formulations is generally to be avoided. Furthermore, a higher systemic exposure to the aerosol particles due to deep lung penetration can enhance the undesired systemic effects of certain drugs. For example, the systemic exposure to certain steroids can produce side effects on bone metabolism and growth.
SUMMARY OF THE INVENTION
Thus, according to the present invention we provide a pharmaceutical aerosol formulation for use in a metered dose inhaler, comprising (i) fluticasone propionate and (ii) a hydrofluoroalkane (HFA) propellant; and characterised in that the fluticasone propionate is completely dissolved in the formulation.
DETAILED DESCRIPTION OF THE INVENTION
The formulation according to the invention will generally contain a solubilisation agent to aid solubilisation of the fluticasone propionate in the formulation. Suitable solubilisation agents include propylene glycol and ethanol, preferably ethanol. Other suitable solubilisation agents include ethers (eg dimethyl ether). Alkanes may also be of use. A further solubilisation agent of interest is dimethoxymethane (methylal) which has good solvency properties. We hav
Cripps Alan Leslie
Johnson Paul
Bacon & Thomas
Haghighatian M.
Hartley Michael G.
SmithKline Beecham Corporation
LandOfFree
Pharmaceutical formulation of fluticasone propionate does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pharmaceutical formulation of fluticasone propionate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pharmaceutical formulation of fluticasone propionate will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3129164