Pharmaceutical compositions for buccal and pulmonary...

Drug – bio-affecting and body treating compositions – Effervescent or pressurized fluid containing – Organic pressurized fluid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S046000, C424S450000, C424S725000, C424S764000, C424S085200, C424S085400, C424S130100, C424S184100, C514S002600, C514S003100

Reexamination Certificate

active

06451286

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an improved pharmaceutical composition comprising macromolecule pharmaceuticals in micellar form. The pharmaceutical compositions are particularly effective in buccal and pulmonary applications. The present invention further relates to methods for preparing and using these pharmaceutical compositions. Methods for enhancing the rate of absorption of a macromolecular pharmaceutical agent are also disclosed.
BACKGROUND INFORMATION
Relatively little progress has been made over the years in reaching the target of safe and effective oral formulations for macromolecules, including peptides and proteins. Barriers to developing oral formulations for proteins and peptides include poor intrinsic permeability, lumenal and cellular enzymatic degradation, rapid clearance, and chemical instability in the gastrointestinal (GI) tract. Pharmaceutical approaches to address these barriers that have been successful with traditional small, organic drug molecules have not readily translated into effective peptide and protein formulations.
Various routes of administration other than injection for proteins and peptides have been explored with little or no success. Oral and nasal cavities have been of particular interest. The ability of molecules to permeate the oral mucosae appears to be related to molecular size, lipid solubility and peptide protein ionization. Molecules less than 1000 daltons appear to cross oral mucosae rapidly. As molecular size increases, the permeability of the molecule decreases rapidly. Lipid soluble compounds are more permeable than non-lipid soluble molecules. Maximum absorption occurs when molecules are un-ionized or neutral in electrical charges. Charged molecules, therefore, present the biggest challenges to absorption through the oral mucosae.
Most proteinic drug molecules are extremely large molecules with molecular weights exceeding 6000 daltons. In addition to being large, these molecules typically have very poor lipid solubility, and are often practically impermeable. Substances that facilitate the absorption or transport of large molecules (i.e., >1000 daltons) across biological membranes are referred to in the art as “enhancers” or “absorption aids”. These compounds generally include chelators, bile salts, fatty acids, synthetic hydrophilic and hydrophobic compounds, and biodegradable polymeric compounds. Many enhancers lack a satisfactory safety profile respecting irritation, lowering of the barrier function, and impairment of the mucocilliary clearance protective mechanism.
Some enhancers, especially those related to bile salts, and some protein solubilizing agents give an extremely bitter and unpleasant taste. This makes their use almost impossible for human consumption on a daily basis. Several approaches attempting to address the taste problem relating to the bile salt-based delivery systems include patches for buccal mucosa, bilayer tablets, controlled release tablets, use of protease inhibitors, and various polymer matrices. These technologies fail to deliver proteinic drugs in the required therapeutic concentrations, however. Further, the film patch devices result in severe tissue damage in the mouth. Other attempts to deliver large molecules via the oral, nasal, rectal, and vaginal routes using single bile acids or enhancing agents in combination with protease inhibitors and biodegradable polymeric materials similarly failed to achieve therapeutic levels of proteinic drugs in the patient. Single enhancing agents fail to loosen tight cellular junctions in the oral, nasal, rectal and vaginal cavities for the time needed to permit passage of large molecules through the mucosal membranes without further degradation. These problems make it impractical to use many systems. Accordingly, there remains a need for improved therapeutic formulations, particularly those comprising macromolecules and particularly those useful for buccal and pulmonary application. Methods for manufacture and use of such formulations are also needed.
SUMMARY OF THE INVENTION
The present invention addresses the above need by providing an improved pharmaceutical composition comprising a macromolecular pharmaceutical agent, an alkali metal alkyl sulfate, and at least three additional micelle-forming compounds, in a suitable solvent. The agent can be one or more proteins, peptides, hormones, vaccines or drugs. The molecular weight of the macromolecular pharmaceutical agent preferably ranges between about 1,000 and 2,000,000 daltons. The agent is presented in mixed micellar form, with a micelle size of approximately one to 10 nanometers (nm). As used herein the term “mixed micelles” refers to at least two different types of micelles each of which has been formed using different micelle forming compounds; for example, the present compositions comprise a mix of at least four different types of micelles—micelles formed between the pharmaceutical agent and alkali metal alkyl sulfate, and micelles formed between the pharmaceutical agent and at least three different additional micelle forming compounds as disclosed herein. It will be understood that each individual micelle can be formed from more than one micelle-forming compound as well. The mixed micelles of the present invention tend to be smaller than the pores of the membranes in the oral cavity or the GI tract. It is therefore believed that the extremely small size of the present mixed micelles helps the encapsulated macromolecules penetrate efficiently through the oral mucosae. Thus, the present compositions offer increased bioavailability of active drug, particularly across oral mucosae, when compared with pharmaceutical preparations known in the art.
The present invention is also directed to a method for enhancing the rate of absorption of a macromolecular pharmaceutical agent comprising administering a composition comprising the agent in combination with an alkali metal alkyl sulfate and at least three micelle-forming compounds. Such a method is particularly effective when the composition is administered to the buccal region.
Methods for making and using the present pharmaceutical compositions are also within the scope of the present invention.
It is therefore an aspect of the present invention to provide a pharmaceutical composition comprising a macromolecular pharmaceutical agent and a combination of micelle forming compounds.
It is a further aspect of the invention to provide such a composition wherein the macromolecular pharmaceutical agent is in micellar form.
It is a further aspect of the invention to provide a method for administering macromolecular pharmaceutical agents, particularly to the buccal and pulmonary regions of a patient.
A further aspect of the invention is to provide methods for making pharmaceutical compositions comprising macromolecular pharmaceutical agents and micelle forming compounds.
These and other aspects of the invention will be apparent from the following disclosure and appended claims.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed to a pharmaceutical composition comprising: an effective amount of a macromolecular pharmaceutical agent; an alkali metal alkyl sulfate; at least three micelle-forming compounds selected from the group consisting of lecithin, hyaluronic acid, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linoleic acid, linolenic acid, monoolein, monooleates, monolaurates, borage oil, evening of primrose oil, menthol, trihydroxy oxo cholanyl glycine, glycerin, polyglycerin, lysine, polylysine, triolein, polyoxyethylene ethers, polidocanol alkyl ethers, chenodeoxycholate, deoxycholate, pharmaceutically acceptable salts thereof, analogues thereof and mixtures or combinations thereof; and a suitable solvent. The alkali metal alkyl sulfate concentration is between about 0.1 and 20 wt./wt. % of the total composition, each micelle-forming compound concentration is between about 0.1 and 20 wt./wt. % of the total composition, and the total concentration of the alkali metal alkyl sulfate and

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pharmaceutical compositions for buccal and pulmonary... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pharmaceutical compositions for buccal and pulmonary..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pharmaceutical compositions for buccal and pulmonary... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2892497

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.