Pharmaceutical composition

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S025000, C536S001110, C536S017100

Reexamination Certificate

active

06566339

ABSTRACT:

The present invention concerns pharmaceutical compositions for promoting the healing of wounds or fibrotic disorders, in particular for promoting the healing of wounds or fibrotic disorders with reduced scarring.
By “wounds or fibrotic disorders” is meant any condition which may result in the formation of scar tissue. In particular, this includes the healing of skin wounds, the repair of tendon damage, the healing of crush injuries, the healing of eye wounds, including wounds to the cornea, the healing of central nervous system (CNS) injuries, conditions which result in the formation of scar tissue in the CNS, scar tissue formation resulting from strokes, and tissue adhesion, for example, as a result of injury or surgery (this may apply to e.g. tendon healing and abdominal strictures and adhesions). Examples of fibrotic disorders include pulmonary fibrosis, glomerulonephritis, cirrhosis of the liver, and proliferative vitreoretinopathy.
By “reduced scarring” is meant reduced level of scarring relative to an untreated wound or fibrotic disorder.
In particular, there is a lack of compositions for promoting the healing of wounds or fibrotic disorders with reduced scarring. Scar tissue formation, although providing mechanical strength to a healed wound, can be unsightly and may impair the function of the tissue.
This is particularly the case in wounds which result in scar tissue formation in the CNS, the scar tissue inhibiting the reconnection of severed or re-growing nerve ends, so significantly affecting their function.
Compositions for promoting the healing of wounds or fibrotic disorders may also be used together with compositions for use in the treatment of chronic wounds, for example venous ulcers, diabetic ulcers and bed sores (decubitus ulcers), especially in the elderly and wheel chair bound patients. Such compositions may be extremely useful in patients where wound healing is either slow or in whom the wound healing process has not yet started. Such compositions may be used to “kick-start” wound healing and may then be used in combination with the compositions of the present invention. Hence not only may a chronic wound be healed, but it may be healed with reduced scarring.
The activation of LTGF-&bgr; (Latent Transforming Growth Factor-&bgr;) to active TGF-&bgr; is a critical step in the healing process. LTGF-&bgr; (which comprises TGF-&bgr; bound to the LAP (Latency Associated Peptide) which in turn may be bound to the LTBP (LTGF-&bgr; Binding Protein)) binds to cell-surface M6P (mannose-6-phosphate) receptors via M6P-containing carbohydrates in the LAP (Purchio, M. F. et al., 1988, J. Biol. Chem., 263: 14211-14215; Dennis, P. A. and Rifkin, D. B., 1991, Proc. Natl. Acad. Sci. USA, 88: 580-584; Shah M. et al., 1992, Lancet, 339: 213-214; Shah, M. et al., 1994, J. Cell Sci., 107: 1137-1157). This binding allows the activation of the LTGF-&bgr; a process also involving transglutaminase and plasminogen/plasmin.
Due to the binding of LTGF-&bgr; to the M6P receptor, M6P itself may play a significant role in the healing process by competing with the M6P-containing carbohydrates in the LAP for the M6P receptor binding site. By increasing the quantity of M6P at a site (by “site” in this context is meant a site of wounding or a fibrotic disorder), the binding of LTGF-&bgr; to the M6P receptor may be inhibited (or at least reduced), and the levels of fibrotic and non-fibrotic TGF-&bgr; affected.
Although M6P is extremely useful, it is quickly metabolised and so previous attempts to increase the levels of M6P at a wound site have focused upon providing a constant supply of M6P to the wound site by the use of slow/sustained/biocompatible non-inflammatory delivery systems. Such slow/sustained delivery systems are both costly and inconvenient and are extremely difficult to produce since it is difficult to achieve slow release from a non-inflammatory/biocompatible vehicle.
The present inventor has found that, surprisingly, analogues of M6P may be used to promote the healing of wounds or fibrotic disorders with reduced scarring, the analogues having similar yet distinct structures and functioning as M6P and/or inhibiting the degradation of M6P.
According to the present invention there is provided an analogue of M6P for use in promoting the healing of wounds or fibrotic disorders with reduced scarring.
The analogue may be a phosphonate analogue of M6P or a salt thereof. Such an analogue may, for example, be any one of the molecules of FIGS.
1
(
a
)-(
f
) or a salt thereof. Surprisingly, it has been found that phosphonate analogues of M6P are capable of binding to the M6P isomerase binding site. This allows them to competitively inhibit the binding of M6P to the binding site and competitively inhibit M6P breakdown (i.e. M6P metabolism), therefore increasing the half-life of M6P. Even more surprisingly, these phosphonate analogues of M6P, despite their molecular similarity to M6P and despite their ability to bind to the M6P isomerase binding site, have significantly greater half-lives than M6P (i.e. are broken down at a significantly slower rate than M6P).
The analogue may have a significantly greater half-life than M6P. The analogue may have a half-life at least approximately 10 times that of M6P. It may, for example, have a half-life at least approximately 100 or 1000 times greater than M6P. It may be metabolised by M6P isomerase at a significantly slower rate than M6P. The analogue may bind the M6P isomerase receptor binding site. It may bind to the cell-surface M6P receptor binding site.
The analogue may bind to the M6P isomerase receptor binding site. It may bind to the cell-surface M6P receptor binding site.
The analogue having a greater binding affinity than M6P for a M6P receptor. The analogue may have a greater affinity than M6P for the M6P isomerase receptor binding site. The analogue may have a binding affinity for the M6P receptor approximately 2 or 3 times that of M6P.
The analogue may be the phosphonate analogue of M6P of FIG.
1
(
b
) or a salt thereof, having a half-life approximately 1000 times that of M6P.
The analogue may be the phosphonate analogue of M6P of FIG.
1
(
b
) or a salt thereof, having a half-life approximately 1000 times that of M6P and a binding affinity for the M6P isomerase receptor binding site approximately 3 times that of M6P.
The analogue may increase the half-life of M6P in an environment containing M6P isomerase. The analogue may be for use in increasing the half-life of M6P in an environment containing M6P isomerase.
The analogue may be for use in the environment of the human or animal body.
The analogue may be for use to promote the healing of wounds or fibrotic disorders with reduced scarring.
The analogue may be an inhibitor of M6P breakdown. It may be an inhibitor of M6P metabolism. It may be an inhibitor of M6P isomerase.
The analogue may be used in conjunction with a composition for promoting the healing of wounds or fibrotic disorders with reduced scarring. Such a composition may comprise M6P. For example, an analogue according to the present invention may comprise a phosphonate analogue of M6P in conjunction with M6P itself.
The analogue may be for use in conjunction with a composition for promoting the healing of chronic wounds.
The analogue may be for use in conjunction with a pharmaceutically acceptable carrier, diluent or excipient.
This means that a single dose of a phosphonate analogue may have a long-lasting effect upon a wound site, providing significant clinical and therapeutic advantages. This in turn means that instead of the present continual supply of M6P to a wound site, a site may be given a single dose, or several doses, of a phosphonate analogue of M6P.
By reducing the dosage of M6P to a wound site, the osmotic effect upon the surrounding tissue at the site may be significantly reduced when compared to the osmotic effect of a continual supply of M6P.
The analogue may be used in conjunction with a pharmaceutically acceptable carrier, diluent or excipient.
Hence the analogue may be functionally equivalent to M6P, yet may

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pharmaceutical composition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pharmaceutical composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pharmaceutical composition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3076582

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.