Pharmaceutical composition

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S021800, C530S350000

Reexamination Certificate

active

06255284

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to pharmaceutical compositions and more specifically to improved protein and polypeptide pharmaceuticals for use as parenteral drugs. Recent advances in the development of genetic engineering technology have made a wide variety of biologically active polypeptides available in sufficiently large quantities for use as drugs. Polypeptides, however, can be subject to particulate formation and loss of biological activity by a variety of chemical and physical means including denaturation due to heating or freezing and by exposure to extreme pH or other chemical degradation.
Particulate formation and loss of biological activity can also occur as a result of physical agitation and interactions of polypeptide molecules in solution and at the liquid-air interfaces within storage vials. It is believed that the polypeptide molecules adsorb to an air-liquid interface, unfolding to present hydrophobic groups to air with the hydrophilic groups immersed in the aqueous phase. Once so positioned at the surface, the polypeptide molecules are susceptible to aggregation, particle formation and precipitation. It is also believed that further conformational changes can occur in polypeptides adsorbed to air- liquid and solid-liquid interfaces during compression-extension of the interfaces such as occurs from agitation during transportation or otherwise. Such agitation can cause the protein to entangle, aggregate, form particles and ultimately precipitate with other adsorbed proteins.
Particle formation due to surface denaturation can be somewhat controlled by appropriate selection of the dimensions of storage vials and by minimizing the air volume (headspace) in those vials. In this regard, partially filled containers represent the worst case for vibration induced precipitation.
Particle formation can also be controlled by incorporation of surfactants into the protein containing composition in order to lower the surface tension at the solution-air interface. Classic stabilization of pharmaceuticals by surfactants or emulsifiers has focused on the amphipathic nature of molecular groups containing both hydrophilic and hydrophobic properties within the surfactant molecule. Thus, the art teaches that one can make a stable solution of immiscible molecules such as oil-in-water or water-in-oil by selecting an appropriate surfactant as a compatibilizer. One example is the stable emulsification of soybean oil using poloxamer 188 (PLURONIC F-68, BASF Wyandotte Corp., Parsippany, N.J.). Another example is the use of polysorbate 80 (TWEEN 80, ICI Americas, Inc. Wilmington, DE) to emulsify oil-soluble vitamins A, E and K in aqueous solution for administration via oral and vascular routes. Work by Krantz, et al., “Sugar Alcohols—XXVIII. Toxicologic, Pharmacodynamic and Clinical Observations on TWEEN 80,” Bull. of the School of Med., U. of MD., 36, 48 (1951) laid the groundwork leading to the listing of polysorbate 80 as a drug ingredient for which USP/NF requirements have been established in U.S. Pharmacopeia XXII.
Of interest to the present invention is the work related to use of polysorbate 80 fot stabilization of antibody-based product formulations as described in Levine, et al., J. Parenteral Sci. Technol., 45, 3, 160-165 (1991). This work disclosed that the amount of surfactant required for stabilization was in excess of the theoretical minimum required to reduce surface tension. The work further showed that the need for excess surfactant beyond the theoretical minimum could be attributed to (1) the concentration required to maintain an intact protective layer on a turbulent interface during random shaking; and (2) to surfactant loosely associated with protein and bound to container walls.
Regulatory requirements limit the types and specific identities of surfactants that can be incorporated into parenteral compositions for injection into the human body. Generally accepted surfactants having a history of use and listed in the U.S. Pharmacopoeia XXII include poloxamer and polysorbate polymers. However, either of these alone may provide less than complete stabilization for the pharmaceutical compositions when used at concentrations of 0.1% or lower. Elevated concentrations of surfactant may pose increased risk of toxic effects, earlier onset of hemolysis, and observed changes in neutrophils and platelets, both of which are involved in blood complement activation. The highest safe concentration for poloxamer 188 in approved parenteral solutions is 2.7% when it is used in limited doses as a blood substitute and is diluted as much as 10 fold in the bloodstream. Similarly, polysorbate 80, approved in parenteral solutions for over 20 years, is rarely used in concentrations greater than 0.1% in solution volumes of 100 mL or more. Krantz et al., supra, identifies the onset of hemolysis in the dog for a polysorbate concentration of 0.1% at 90 minutes. Neonatal deaths have been associated with the use of polysorbate 80 at concentrations of greater than 1%. Accordingly, there exists a need in the art for pharmaceutical compositions providing improved protein stability which comprise only those components which are regarded as safe and are included in parenterals approved by regulatory authorities for commercial use.
SUMMARY OF THE INVENTION
The present invention relates to pharmaceutical compositions of polypeptides and is directed to the discovery that poloxamer surfactants and combinations of poloxamer surfactants with polysorbate surfactants enhance the solubility/stability of bactericidal/permeability increasing (BPI) protein, biologically active fragments of BPI, biologically active analogs of BPI, and biologically active variants of BPI (produced by either recombinant or nonrecombinant means) in aqueous solution. The invention particularly provides for solubilization/stabilization of bactericidal/permeability increasing proteins which are biologically active amino-terminal fragments of BPI or analogs and variants thereof. Amino-terminal fragments of BPI, such as those designated rBPI
23
or any amino-terminal fragment comprising from about the first 193 to about the first 199 amino-terminal amino acid residues of BPI, are believed to be particularly susceptible to loss of stability in aqueous solution.
The present invention is directed in particular to the discovery that a combination of two specific types of surfactants provides a surprising improvement in protein stability to pharmaceutical compositions compared to either surfactant alone. Specifically, it has been found that a pharmaceutical composition comprising the combination of a poloxamer (polyoxypropylene-polyoxyethylene block copolymer) surfactant and polysorbate (polyoxyethylene sorbitan fatty acid ester) surfactant provides improved stability and resistance to aggregation, particle formation and precipitation of protein pharmaceutical agents. The combination of these two types of surfactants provides improved stability and resistance to surface denaturation, aggregation, particle formation and precipitation compared with either surfactant alone.
The poloxamer surfactant component is preferably present in a concentration of from about 0.01% to about 1% by weight with a concentration of 0.1% to 0.2% by weight being preferred to stabilize protein solutions comprising less than or equal to 2 mg/mL. The polysorbate surfactant component is preferably present in a concentration of from about 0.0005% to about 1% by weight with a concentration of 0.002% by weight being preferred. Most preferred is the combination comprising 0.1% to 0.2% by weight of poloxamer 188 and 0.002% by weight polysorbate 80. This combination is particularly useful for preventing particle formation of extremely degradation sensitive proteins such as bactericidal/permeability increasing protein (BPI) but is also useful for promoting the stability of other polypeptide pharmaceuticals. It is contemplated that the combination of poloxamer and polysorbate surfactants may be used alone or in combination with additional surfac

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pharmaceutical composition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pharmaceutical composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pharmaceutical composition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2547860

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.