Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
1997-11-07
2001-05-15
Travers, Russell (Department: 1617)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C514S374000, C514S369000, C514S370000, C514S376000, C514S377000
Reexamination Certificate
active
06232333
ABSTRACT:
TECHNICAL FIELD
A liquid pharmaceutical composition providing improved oral bioavailability is disclosed for compounds which are inhibitors of HIV protease. In particular, the composition is a solution which comprises (a) the HIV protease inhibitor, (b) a pharmaceutically acceptable organic solvent and, optionally, (c) a surfactant. The composition can optionally be encapsulated in either hard gelatin capsules or soft elastic capsules (SEC).
BACKGROUND OF THE INVENTION
One measure of the potential usefulness of an oral dosage form of a new pharmaceutical agent is the bioavailability observed after oral administration of the dosage form. Various factors can affect the bioavailability of a drug when administered orally. These factors include aqueous solubility, drug absorption throughout the gastrointestinal tract, dosage strength and first: pass effect. Aqueous solubility is one of the most important of these factors. When a drug has poor aqueous solubility, attempts are often made to identify salts or other derivatives of the drug which have improved aqueous solubility. When a salt or other derivative of the drug is identified which has good aqueous solubility, it is generally accepted that an aqueous solution formulation of this salt or derivative will provide the optimum oral bioavailability. The bioavailability of the oral solution formulation of a drug is then generally used as the standard or ideal bioavailability against which other oral dosage forms are measured.
For a variety of reasons, such as patient compliance and taste masking, a solid dosage form, such as capsules, is usually preferred over a liquid dosage form. However, oral solid dosage forms of a drug generally provide a lower bioavailability than oral solutions of the drug. One goal of the development of a suitable capsule dosage form is to obtain a bioavailability of the drug that is as close as possible to the ideal bioavailability demonstrated by the oral solution formulation of the drug.
It has recently been determined that HIV protease inhibiting compounds are useful for inhibiting HIV protease in vitro and in vivo, are useful for inhibiting HIV (human immunodeficiency virus) infections and are useful for treating AIDS (acquired immunodeficiency syndrome). HIV protease inhibiting compounds typically are characterized by having poor oral bioavailability and there is a continuing need for the development of improved oral dosage forms for HIV protease inhibitors which have suitable oral bioavailability, stability and side effects profiles.
Examples of HIV protease inhibiting compounds include N-(2(R)-hydroxy-1(S)-indanyl)-2(R)-phenylmethyl-4(S)-hydroxy-5-(1-(4-(3-pyridylmethyl)-2(S)-N′-(t-butylcarboxamido)-piperazinyl))-peritaneamide (i.e., indinavir) and related compounds, disclosed in European Patent Application No. EP541168, published May 12, 1993, and U.S. Pat. No. 5,413,999, issued May 9, 1995 which are both incorporated herein by reference; N-tert-butyl-decahydro-2-[2(R)-hydroxy-4-phenyl-3(S)-[[N-(2-quinolylcarbonyl)-L-asparaginyl]amino]butyl]-(4aS,8aS)-isoquinoline-3(S)-carboxamide (i.e., saquinavir) and related compounds, disclosed in U.S. Pat. No. 5,196,438, issued Mar. 23, 1993, which is incorporated herein by reference; 5(S)-Boc-amino-4(S)-hydroxy-6-phenyl-2( R)-phenylmethylhexanoyl-(L)-Val-(L)-Phe-morpholin-4-ylamide and related compounds, disclosed in European Patent Application No. EP532466, published Mar. 17, 1993, which is incorporated herein by reference;
1-Naphthoxyacetyl-beta-methylthio-Ala-(2S,3S)-3-amino-2-hydroxy-4-butanoyl-1,3-thiazolidine-4-t-butylamide (i.e., 1-Naphthoxyacetyl-Mta-(2S,3S)-AHPBA-Thz-NH-tBu), 5-isoquinolinoxyacetyl-beta-methylthio-Ala-(2S,3S)-3-amino-2-hydroxy-4-butanoyl-1,3-thiazolidine-4-t-butylamide (i.e., iQoa-Mta-Apns-Thz-NHtBu) and related compounds, disclosed in European Patent Application No. EP490667, published Jun. 17, 1992 and Chem. Pharm. Bull. 40 (8) 2251 (1992), which are both incorporated herein by reference;
[1S-[1R*(R*),2S*]}-N
1
[3-[[[(1,1-dimethylethyl)amino]carbonyl](2-methylpropyl)amino]-2-hydroxy-1-(phenylmethyl)propyl]-2-[(2-quinolinylcarbonyl)amino]-butanediamide (i.e., SC-52151) and related compounds, disclosed in PCT Patent Application No. WO92/08701, published May 29, 1992 and PCT Patent Application No. WO93/2336, published Nov. 25, 1993, both of which are incorporated herein by reference;
(i.e., VX-478) and related compounds, disclosed in PCT Patent Application No. WO94/05639, published Mar. 17, 1994, which is incorporated herein by reference;
and related compounds, disclosed in PCT Patent Application No. WO93/07128, published Apr. 15, 1993, which is incorporated herein by reference;
disclosed in PCT Patent Application No. WO95/09843, published Apr. 13, 1995 and U.S. Pat. No. 5,484,926, issued Jan. 16,1996, which are both incorporated herein by reference;
disclosed in European Patent Application No. EP580402, published Jan. 26, 1994, which is incorporated herein by reference;
and related compounds disclosed in PCT Patent Application No. WO 9506061, published Mar. 2, 1995, which is incorporated herein by reference and at 2nd National Conference on Human Retroviruses and Related Infections, (Washington, D.C., Jan. 29-Feb. 2, 1995), Session 88; and
(i.e., BILA 1096 BS) and related compounds disclosed in European Patent Application No. EP560268, published Sep. 15, 1993, which is incorporated herein by reference; and
compounds disclosed in PCT Patent Application No. WO 9530670, published Nov. 16, 1995, which is incorporated herein by reference; or a pharmaceutically acceptable salt of any of the above.
Other examples of HIV protease inhibiting compounds include compounds of the formula I:
wherein R
1
is lower alkyl and R
2
and R
3
are phenyl and related compounds or a pharmaceutically acceptable salt thereof, disclosed in PCT Patent Application No. WO94114436, published Jul. 7, 1994 and U.S. Pat. No. 5,541,206, issued Jul. 30, 1996, both of which are incorporated herein by reference. The compounds of formula I are useful to inhibit HIV infections and, thus, are useful for the treatment of AIDS.
In particular, the compound of formula II, has been found to be especially effective as an inhibitor of HIV protease.
The most preferred compound of formula II is (2S,3S,:5S)-5-(N-(N-((N-Methyl-N-((2-isopropyl-4-thiazolyl)methyl)-amino)carbonyl)valinyl)amino)-2-(N-((5-thiazolyl)methoxycarbonyl)amino)-1,6-diphenyl-3-hydroxyhexane (ritonavir; compound III) or a pharmaceutically acceptable salt thereof.
Other examples of HIV protease inhibiting compounds also include compounds of the formula IV:
wherein R
1
is benzyl, R
2
is benzyl or loweralkyl, R
3
is loweralkyl and R
5
is
and related compounds or a pharmaceutically acceptable salt thereof, disclosed in U.S. patent application Ser. No. 08/572,226, filed Dec. 13, 1996 and U.S. patent application Ser. No. 08/753,201, filed Nov. 21, 1996 and International Patent Application No. WO97/21685, published Jun. 19, 1997, all of which are incorporated herein by reference.
A preferred compound is the compound of formula IV wherein R
1
and R
2
are benzyl, R
3
is isopropyl and R
5
is
A most preferred compound of the formula IV is (2S,3S,5S)-2-(2,6-Dimethylphenoxyacetyl)amino-3-hydroxy-5-[2S-(1-tetrahydro-pyrimid-2-onyl)-3-methyl butanoyl]amino-1,6-diphenylhexane (compound V) or a pharmaceutically acceptable salt thereof. The preparation of compound V is disclosed in U.S. patent application Ser. No. 08/572,226, filed Dec. 13,1996 and U.S. patent application Ser. No. 08/753,201, filed Nov. 21, 1996 and International Patent Application No. WO97/21685, published Jun. 19, 1997.
Compound III has an aqueous solubility of approximately 6 micrograms per milliliter at pH>2. This is considered to be extremely poor aqueous solubility and, therefore, compound III in the free base form would be expected to provide very low oral bioavailability. In fact, the free base form of compound III, admi
Al-Razzak Laman A.
Gao Rong
Ghosh Soumojeet
Kaul Dilip
Lipari John
Abbott Laboratories
Crowley Steven R.
Travers Russell
LandOfFree
Pharmaceutical composition does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pharmaceutical composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pharmaceutical composition will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2447710