Telecommunications – Transmitter and receiver at same station – Radiotelephone equipment detail
Reexamination Certificate
2000-06-30
2004-01-13
Nguyen, Lee (Department: 2682)
Telecommunications
Transmitter and receiver at same station
Radiotelephone equipment detail
C455S041300, C455S426100, C370S466000
Reexamination Certificate
active
06678535
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to communication systems generally, and more specifically, to a pervasive dock that implements on the fly communications protocol conversion for enabling communication between a variety of devices.
2. Discussion of the Prior Art
Computing, mobile and wireless communications technologies have been rapidly advancing -culminating in a variety of powerful user friendly devices such as personal digital assistants (PDAs), cellular phones, pagers, etc. Today, it is possible to purchase handheld PDA's, e.g., palmtops-such as the Palm Pilot®, that employ wireless communication devices and that combines computing, telephone/fax, and networking features. A typical PDA may function as a cellular phone, fax sender, and personal organizer and are pen-based, requiring a stylus for text entry. As such, these device incorporate handwriting recognition features and may even employ voice recognition technologies that react to voice input. Small devices such as the RIM 950 and the Motorola PageWriter 2000 pager use a small keyboard for input.
It is commonly accepted that these pagers, PDAs and cell phone devices need to communicate among each other to increase their overall value. The proliferation of short range wireless communications technology and protocols such as IrDA (infra red), SIR (serial infra red), BlueTooth (radio 2.4 GHz), 802.11 has enabled some of these varied devices to communicate amongst themselves. A problem with these technologies is that they all have drawbacks—e.g., IrDA is only line of sight, and BlueTooth and 802.11 are largely power consumptive (about 250 mw for BlueTooth and 1 W for 802.11) for small devices such as cellular phones, pagers and watches. Lower power radio technologies such as those used in garage door openers have the problem of interference because they operate on a single frequency and do not adopt ideas such as fast frequency hopping spread spectrum techniques which avoid conflict with other devices communicating using the same wireless technology.
Today, the industry is striving to provide advancements by providing increased PC desktop-like functionality while both decreasing size and power requirements. More recently there have been attempts to incorporate some of the capabilities of the above devices into wrist watches. However, today, only special wearable watch devices are available that, besides time keeping functions, may possess a compass, or a Global Positioning System (GPS), or barometer, heart rate monitor, Personal Handy System (PHS) phone, pager, etc. There are shortcomings in these existing special function watches in that most of them are bulky, are mostly unconnected the Internet or other PC
etwork devices, have limited battery life, and, are difficult to use. These currently available special function wrist watches additionally have user interfaces that are quite limited in what they can display. For example, in the context of setting time in digital watches, currently, the user is only enabled to set the hour and minute independently, with time only advancing in one direction. Furthermore, most of them have a 6 to 8 seven segment LED or LCDs which can be used to display 6 or 8 digits/letters, and have a small number of indicators that can display AM/PM, Alarm on/off, etc. only at fixed locations within the display. A few watches are currently appearing on the market that have slightly richer display characteristics. Regardless, these various shortcomings have to be solved, otherwise there is no compelling reason for these watches to become popular. The design of a wrist watch for mobile computing applications offers a significant challenge because the watch is a small device. That is, both fitting components and power supplies such as batteries into such a small volume and given the limited screen size of watches pose limitations that have be overcome. Solving these issues is worthy because the watch is an attractive form as 1) it is one of the few devices that a very large fraction of the population is already accustomed to worldwide, 2) is accessible almost all the time, and, 3) is hard to lose.
It is the case however, that a single wireless technology is not sufficient for all devices, as some of these devices simply do not have room for a battery to supply the power needed by the wireless technology. Additionally, it is not clear that all devices need the same wireless range. For example if one device is on the person's wrist and another is in his/her wallet, the range needed gets reduced significantly. Further, it is impractical to embed more than one or two wireless technologies into a single device because of space and cost restrictions.
It would thus be highly desirable to provide a device that performs communication protocol conversions, and preferably, one that would accept a wireless signal from a source device and convert it on the fly to an output that is suitable for receipt by a recipient wireless device.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a device that enables efficient communication between a myriad of devices implementing various communication technologies and protocols.
It is another object of the present invention to provide a device that performs on the fly communication protocol conversion between wireless protocols.
According to the principles of the invention, there is provided a communications protocol conversion system and methodology includes one or more first interface devices for receiving data signals communicated by a first communications device in accordance with a first communications protocol; a format a converter device for converting the received data signals into data signals in accordance with a second communications protocol; and, one or more second interface devices for outputting the data signals in accordance with the second protocol to a second communications device. Preferably, the protocol conversion is performed for wireless communications protocols. Such a device preferably accepts a wireless signal from a source device and converts it to an output that is acceptable to a recipient device.
Advantageously, the myriad of communications devices implementing wireless technologies and protocols may remain small in size as not having to support several communication protocols. -Thus, the cost of these devices may be reduced as most of the cost is attributed to the communications protocol conversion system rather than into each individual wireless device.
REFERENCES:
patent: 5479400 (1995-12-01), Dilworth et al.
patent: 6404775 (2002-06-01), Leslie et al.
patent: 6405049 (2002-06-01), Herrod et al.
patent: 6496107 (2002-12-01), Himmelstein
patent: 11-265336 (1999-09-01), None
patent: WO 99/39488 (1999-08-01), None
“The World's Smallest PDA Computer Watch”, Hammacher Schlemmer Mid Summer 2000 Catalog, p. 3.
Nguyen Lee
Perez-Pineiro Rafael A.
Scully Scott Murphy & Presser
LandOfFree
Pervasive dock and router with communication protocol converter does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pervasive dock and router with communication protocol converter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pervasive dock and router with communication protocol converter will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3225184