Personal hydration system for runners

Package and article carriers – Carried by animate bearer – For liquid or liquid-holding container

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C222S175000, C224S148400, C224S148500, C224S901800

Reexamination Certificate

active

06666360

ABSTRACT:

FEDERALLY SPONSORED RESEARCH
Not Applicable
SEQUENCE LISTING OR PROGRAM
Not Applicable
BACKGROUND
1. Field of Invention
This invention relates to the field of personal hydration systems used by runners or joggers.
2. Discussion of Prior Art
Running, cycling, and other forms of exercise produce an increased need for water intake to compensate for that lost by respiration, perspiration, and urinary output. This need, if not met, may become life threatening during prolonged high-intensity activity in hot weather. It is therefore desirable to be able to carry on one's person an adequate supply of water or other hydrating fluid.
Although hydration systems are in common use by cyclists, prior art hydration systems for runners have not met two essential design criteria. One is that the device must utilize a stable, non-irritating waist-mounted system with sufficient motion control to minimize bounce and sway. Another is that the device must provide a simple, lightweight, and inexpensive means for delivering fluid from waist level to mouth level.
One type of hydration system for runners utilizes one or more water bottles attached to a waist-mounted belt. U.S. Pat. Nos. 6,241,135 and D444,295 describe similar waist-mounted bottle/flask systems. One problem with this type of system is that the bottles are rigid, and the center of mass of the attached water bottles is relatively far from the center of mass of the runner. Furthermore, as the bottles are drained with use, water is free to slosh about. Consequently, it is difficult to provide motion control for these bottles, and the bouncing of the rigid bottles against the user is uncomfortable.
Personal hydration systems used by cyclists employ a flexible bladder encased in a fabric pack and mounted upon the cyclist's back with shoulder straps. Fluid is delivered by a tube with a bite-valve that delivers fluid when the user bites down on the end; one embodiment of this type of hydration system is disclosed in U.S. Pat. No. 5,060,833. Because of the bent-over posture of a cyclist, the elevated position of the pack relative to the user's mouth creates a hydrostatic head that allows for gravity-driven flow of fluid from the pack to the user's mouth. Although this type of hydration system has seen widespread use among cyclists, runners have not embraced this type of system for two important reasons: lack of motion control and difficulty in drawing water from back level to the mouth level due to the upright posture of the runner. Although such a device, when mounted on the back, is suitable for a cyclist whose body remains relatively stable in both the horizontal and vertical planes, the lack of motion control makes it unsuitable for a runner, whose torso tends to oscillate, creating unacceptably large oscillations of the pack in the vertical (bounce) and horizontal (sway) directions. This motion of the pack can chafe the user, and fatigue the upper back, neck, and shoulder muscles. There is little that can be done to increase the amount of motion control of a back-mounted pack, as increased strap tension produces unacceptable stress on the user's neck, back, and shoulder muscles. Furthermore, because of the upright posture of the runner, the pack is located below the user's mouth, and the loss of a hydrostatic head results in a need to draw water by suction, a difficult task when running.
Manufacturers of back-mounted hydration packs have attempted to adapt these devices for runners so that they may be worn about the waist or hips. These waist-mounted packs are essentially back-mounted designs retro-fitted with a waistband, designed without consideration of the unique needs of runners. Because of the lower center of gravity relative to back-mounted packs, placement of a hydration pack at waist level is desirable. However, this placement makes it difficult to draw the fluid to mouth level, as it requires an unacceptably high amount of suction from the user to draw the liquid from waist level to mouth level. One possible solution to this problem is to include a pump to force the liquid to mouth level; U.S. Pat. Nos. 5,645,404 and 5,571,260 describe similar devices. However, the inclusion of a pump and its obligatory power supply results in disadvantages of both increased weight and cost. Another approach is to pressurize the bladder; U.S. Pat. No. 6,409,048 utilizes compression plates on opposing sides of the bladder, and compression is achieved by a number of straps which must all be cinched up in order to squeeze the two plates together. However, this design presents several problems. As fluid is drained, the straps must be continually tightened to maintain pressure, a cumbersome task. The plates must also be stiff, turning the bladder into an uncomfortable rigid body.
Because a cyclist has little body motion relative to a runner, a back-mounted pack can be attached with loose shoulder straps. Furthermore, since there is little motion of the pack relative to the user's back, the pack can be constructed of non-elastic woven nylon or polyester fabric. However, running produces substantial running-related movement of the muscles about the waist and hip area. To achieve sufficient motion control, the waistband must be cinched tight to prevent motion of the pack. However, as the tension of the waistband increases, so too does the pressure on the user's muscles, tendons, and other tissue. Thus, the user of such packs is faced with a dilemma: if too loose, the pack will have too much motion, and if too tight, the result is discomfort and possible injury. Since the tissue of the waist area is in motion, the pack itself must be sufficiently pliant so that it can move with the runner. Non-elastic fabric does not allow for this, and may represent a potential source of repetitive stress injury to runners who use such systems.
Another problem that arises with the use of non-elastic cloth relates to the ability of the fabric to prevent motion of the bladder within the fabric pack. The basic design of prior art packs is a bladder within a fabric bag. Because the fabric is non-elastic, the maximum tension against the bladder is achieved only when the bladder is completely filled. As fluid is drained from the bladder, the volume of the bladder decreases, but the volume of the fabric bag does not. The bladder is thus free to bounce around, producing additional motion of the entire system. Numerous systems utilize additional straps to take up the slack created by decreasing bladder volume, however, these must be continually tightened, a cumbersome task.
One means by which to achieve motion control is to make the attached object an integral part of the runner's body such that the amplitude of motion is reduced and more in phase with the runner. A consideration of the problems faced by women runners may be informative. Breast tissue has fluid properties, and running produces considerable motion of the tissue. The solution to this problem is provided by athletic bras designed to restrain the breast by compression against the body, an effect accomplished through the means of snug-fitting elastic fabric as shown in U.S. Pat. No. 4,174,717. This compression decreases the moment of inertia of the tissue by reducing the distance of the center of mass of the tissue to the center of mass of the subject. The elastic fabric also dampens tissue motion. The physical properties of a flexible fluid-filled bladder suggest that a similar design would work in a waist-mounted hydration system.
Delivery of fluid from waist-level to the mouth presents additional obstacles. It is not possible to use a tube delivery device while running, as this requires prohibitively large suction forces that are impossible to generate while breathing at a high rate. However, unlike cyclists, runners are free to use their hands, and it is common practice during races to provide water in disposable cups. Cups are problematic, though, as it is easy both to spill their contents and to accidentally choke when running. Squeeze bottles present less risk of spi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Personal hydration system for runners does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Personal hydration system for runners, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Personal hydration system for runners will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3164475

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.