Telephonic communications – Audio message storage – retrieval – or synthesis – Voice activation or recognition
Reexamination Certificate
2002-04-17
2004-12-07
Foster, Roland G (Department: 2645)
Telephonic communications
Audio message storage, retrieval, or synthesis
Voice activation or recognition
C379S088190, C379S201020, C379S373020
Reexamination Certificate
active
06829332
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation-in-part of U.S. patent application Ser. No. 08/828,959 filed Mar. 28, 1997, now U.S. Pat. No. 5,978,450, and a continuation-in-part of U.S. patent application Ser. No. 08/904,936 filed Aug. 1, 1997, now U.S. Pat. No. 6,038,305, and of U.S. patent application Ser. No. 09/006,033 filed Jan. 12, 1998, now U.S. Pat. No. 6,167,119 the disclosures of which are expressly incorporated herein entirely by reference.
TECHNICAL FIELD
The present invention relates to personalized telecommunications services, preferably offered through an intelligent telephone network, and to such a service providing personalized call waiting. The personalized call waiting service may personalize the waiting tone to the called subscriber and/or personalize the identification of the caller if provided with the call waiting signal.
ACRONYMS
The written description uses a large number of acronyms to refer to various services, messages and system components. Although generally known, use of several of these acronyms is not strictly standardized in the art. For purposes of this discussion, acronyms therefore will be defined as follows:
Address Complete Message (ACM)
Advanced Intelligent Network (AIN)
Analog Display Services Interface (ADSI)
Answer Message (ANM)
Automatic Number Identification (ANI)
Call Processing Record (CPR)
Call Waiting (CW)
Central Office (CO)
Common Channel Interoffice Signalling (CCIS)
Common Channel Signaling (CCS)
Customer Premises Equipment (CPE)
Data and Reporting System (DRS)
Destination Point Code (DPC)
Dual Tone MultiFrequency (DTMF)
Frequency Shift Key (FSK) data modulation
Generic Data Interface (GDI)
Initial Address Message (IAM)
Integrated Service Control Point (ISCP)
Integrated Services Digital Network (ISDN)
ISDN User Part (ISDN-UP)
Intelligent Peripheral (IP)
Line Identification Data Base (LIDB)
Multi-Services Application Platform (MSAP)
Office Equipment (OE)
Origination Point Code (OPC)
Personal Communications Service (PCS)
Personal Identification Number (PIN)
Plain Old Telephone Service (POTS)
Point in Call (PIC)
Primary Rate Interface (PRI)
Public Switched Telephone Network (PSTN)
Service Control Point (SCP)
Service Creation Environment (SCE)
Service Management System (SMS)
Service Switching Point (SSP)
Signaling System 7 (SS7)
Signaling Point (SP)
Signaling Transfer Point (STP)
Simplified Message Desk Interface (SMDI)
Speaker Identification/Verification (SIV)
Terminating Attempt Trigger (TAT)
Time Slot Interchange (TSI)
Traffic Service Position System (TSPS)
Transaction Capabilities Applications Part (TCAP)
Transmission Control Protocol/Internet Protocol (TCP/IP)
Trunk (TR)
BACKGROUND ART
Telephone service has become virtually ubiquitous throughout the modern world. A person can simply take a telephone off-hook, dial a destination telephone number, and if someone answers the called telephone, the caller can converse with another party anywhere in the world.
Today, however, the public switched telephone network (PSTN) and other telephone networks such as cellular systems provide most telephone services based on number identification of the telephone set or line that each party uses. Services are personalized only to the extent that a party uses the same line and/or instrument. For example, a person typically has one set of service features and billing options available via a telephone on the person's desk at the office, another set of service features and billing options available via the telephone line to their home and perhaps a third set of service features and billing options available via a wireless telephone (e.g. cellular or personal communications service (PCS)). The networks process calls to and from each of these different subscriber telephones based on a separate telephone number. A caller may use personalized billing options by using a calling card, but often the input operations for calling card service are overly complex. With the exception of calling card billing, each person using a particular telephone typically can only access those service features and billing options associated with the particular line or telephone instrument.
The proliferation of services causes subscribers inconvenience. For example, circumstances arise in which a subscriber may want a feature or billing option normally associated with one line or instrument, such as the office telephone, when they are in fact using a different line or instrument such as their home or PCS telephone. Alternatively, two or more persons using one telephone or line often want different sets of service options. Also, the extreme increase in demand for telephone services is rapidly exhausting the capacity of the network, particularly in terms of the telephone numbers available under the current numbering plan.
A number of specific solutions have been proposed for individual problems, such as work at home and/or transfer of service to new location(s) as an individual travels. However, each of these solutions is limited or creates its own new problems.
For example, U.S. Pat. No. 4,313,035 to Jordan et al. discloses a method of using an intelligent network to provide a ‘follow-me’ type service through multiple exchanges of the switched telephone network using an AIN type of telephone system architecture. Each subscriber to the locator service has a unique person locator telephone number. To access the system to update data in a service control database, the subscriber dials 0700 and his unique person locator telephone number. The telephone switching office routes the call to a traffic service position system (TSPS) which prompts the caller (e.g. provides an additional dial tone) and receives further digits from the subscriber. The subscriber inputs a three digit access code, indicating the type of update call, and a four digit personal identification number. If calling from the remote station to which the subscriber wishes his calls routed, the local switching office forwards the line identification number of that station to the TSPS. The TSPS forwards the dialed information and the line identification to the data base for updating the particular subscriber's location record. A caller wishing to reach the subscriber dials the subscriber's unique person locator number. A telephone switching office sends the dialed number to the central database. The database retrieves the stored completion number for the called subscriber and forwards that number back to the switching office to complete the call.
The Jordan et al. approach allows calls to follow the subscriber to each new location, but the subscriber must have a unique telephone number for this service. Each station that receives a call also must have a unique telephone number. As such, the Jordan et al. approach actually exacerbates the shortage of telephone numbers. Also, Jordan et al. rely on subscriber input of identification numbers. Subscribers often find this inconvenient, and this technique is often prone to number entry errors.
U.S. Pat. No. 4,899,373 to Lee et al. discloses a system for providing special telephone services to a customer on a personal basis, when the customer is away from his or her home base or office. The personalized services are provided in a multiple exchange office environment, using a central database for feature control. The nationally accessible central database system stores feature data in association with personal identification numbers. A subscriber wishing to use his personalized features while away from home base dials a special code and presents the personal identification number. The exchange transmits a query to the central database, and the corresponding feature data is retrieved from the database. The database forwards the feature data to the exchange, and the exchange stores the received feature data in association with the station from which the request was initiated. Subsequently, the exchange accesses the downloaded feature data to provide telephone service corresponding to the subscriber's personalized telephone featu
Farris Robert D.
McAllister Alexander I.
Strauss Michael J.
Foster Roland G
Rader, Fishman & Graue PLLC
Suchtya, Esq. Leonard C.
Verizon Services Corp.
Wall, Esq. Joel
LandOfFree
Personal dial tone service with personalized call waiting does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Personal dial tone service with personalized call waiting, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Personal dial tone service with personalized call waiting will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3312096