Personal cooling air filtering device

Refrigeration – Using electrical or magnetic effect – Thermoelectric; e.g. – peltier effect

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S003700, C165S065000

Reexamination Certificate

active

06430935

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable.
FIELD OF THE INVENTION
The present invention relates to temperature modification systems, and more particularly to temperature modification systems which use carbon foam composite materials.
BACKGROUND OF THE INVENTION
Temperature modification systems proliferate today. Homes, offices, cars, trains, and aircraft, for example, all commonly use air conditioning and heating systems for the comfort of occupants.
Certain environments create challenging temperature modification goals for conventional temperature modification systems, such as restrictions on the size and weight of the temperature modification system. Such environments can also demand other modifications, such as a reduction in the level of harmful chemical pollutants and/or particulates. For example, in the automobile racing industry, and in particular NASCAR™, drivers are typically exposed for many hours to hot air having high concentrations of gasoline combustion by-products, including carbon monoxide. As a result, race car drivers frequently complain of fatigue, exhaustion, and dry mouth, symptoms of carbon monoxide (CO) poisoning and heat exhaustion.
A variety of devices have been conceived to provide cool filtered air to race car drivers. However, most are bulky and/or impractical. These devices are usually very simple in design, such as a bucket of ice water, ice, or even dry ice (solidified carbon dioxide), having a copper tube coiled through the bucket. Air is forced by a fan (typically at about 100 cfm) through the copper coil which results in cooling of the air. The cooled air is then filtered and provided to the helmet of the driver in an attempt to cool the driver's head.
Two problems plague this type of system. First, to supply a bucket of chilled material (e.g. ice) large enough to last the entire race (or even 1 hour) requires a large volume allocated for the cooling system. Second, supplying air to a driver's helmet in an attempt to cool the head is not an efficient method of cooling an individual since most of the cooled air does not enter the helmet. Poor efficiency results because the helmets are usually fit around a driver's head. Accordingly, there is generally only a small volume remaining in the helmet for the cooled air to circulate. Hence, the cooling efficiency for individuals using this type of system is generally very low.
Another type of cooling system uses a phase change material (other than ice) or chemical pack (a reaction which is endothermic provides the cooling) in place of the bucket of chilled material. However, this type of system suffers from the same limited cooled air circulation problem inherent when providing cool air to the helmet of an individual.
Other attempts at providing personal cooling systems have targeted developing either complex cooling vests to be worn around the upper torso, or simple cooling vests with ice packs. These systems require the periodic changing of the chilled material or chemical pack. Accordingly, these designs are also generally impractical since they are usually worn under some sort of protective garment (e.g. under a fire suit by auto racers, by firefighters, under protective armor by police, SWAT, and military personnel). Difficulty or inability to change chilled material or chemical packs limits the time individuals can be exposed to harsh environments since changing out the chilled material or chemical packs under protecting garments is prohibitive in most environments (e.g. during a fire or on the 224th lap of a race).
Improved thermal materials have recently been discovered. For example, carbon foam is a material formed from carbon (graphite) fibers which possesses unique properties. Applicant and/or the assignee of the invention (or its predecessors in interest) have invented (or co-invented) processes for forming low density, high thermal conductivity carbon foam materials; e.g., U.S. Pat. No. 6,033,506 to Klett, U.S. Pat. No. 6,037,032 to Klett and Burchell; which are both incorporated herein by reference in their entirety. Through linkage of a plurality of graphitic elements within an appropriate matrix material, carbon foam structures described in the above patents have demonstrated thermal conductivities of approximately 187 W/m°K, while having densities of only approximately 0.55 g/cc. Thus, carbon foam elements can be produced which are more thermally conductive than aluminum, having approximately ⅕ the weight of an aluminum element having the same volume.
SUMMARY
A temperature modification system for modifying the temperature of fluids includes at least one thermally conductive carbon foam element, the carbon foam element having at least one flow channel for the passage of fluids. The flow channel has an inlet and an outlet. At least one temperature modification device is provided, the temperature modification device thermally connected to the carbon foam element and adapted to modify the temperature of the carbon foam, which modifies the temperature of fluid passing through flow channels within the carbon foam.
The temperature modification device can be selected from devices having a first and second side and adapted for reversible operation between two states. A first state, the first side is heated while the second side is cooled. In a second state, the first side is cooled while the second side is heated. Thermoelectric and/or thermoionic elements can provide the above features. In a preferred embodiment of the invention, the temperature modification device can be interposed between two carbon foam elements.
The temperature modification system can include at least one fluid filter, the fluid filter disposed in series with the flow channels. The fluid filter is preferably disposed in direct fluid connection with the flow channel outlet if the outlet temperature is cooler than the inlet temperature. If the outlet temperature is warmer than the inlet temperature, the fluid filter is preferably disposed in direct fluid connection with the flow channel input. The system can also include at least one fluid conduit, such as a hose, for directing temperature modified fluids emitted from the outlet.
A mask can be provided for receiving fluids emitted from the hose, the mask adapted to provide fluids to an individual. In this embodiment, at least one fluid filter can be provided, the fluid filter disposed in series with the flow channel. Preferably, the fluid filter is an activated carbon filter. Preferably, the fluid filter is disposed in direct fluid connection with the flow channel outlet if the outlet temperature is cooler than the inlet temperature. If the outlet temperature is warmer than the inlet temperature, the fluid filter is preferably disposed in direct fluid connection with the flow channel input.
The system can include a control system. The control system can have a polarity switch adapted for switching the sides of the temperature modification device between heating and cooling modes when an appropriate temperature modification device is provided in the system (e.g. thermoelectric, thermoionic).
A method for the reversible temperature modification of fluids includes the steps of providing a temperature modification system including at least one thermally conductive carbon foam element, the carbon foam element having at least one flow channel, and at least one temperature modification device. The temperature modification device is thermally connected to the carbon foam element. A fluid is flowed through the flow channel. The temperature of the fluid emitted from an outlet of the system is modified relative to a temperature of the fluid received at an inlet of the system.
Preferably, the temperature modification device is adapted for switching between heating and cooling modes. Switching between heating and cooling modes can be provided by thermoionic and/or thermoelectric elements. The method can also include the step of filtering the fluid. The fluid filter is preferably disposed in direct fluid connection with the flow channel outlet if the o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Personal cooling air filtering device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Personal cooling air filtering device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Personal cooling air filtering device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2892426

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.