Data processing: measuring – calibrating – or testing – Measurement system – Remote supervisory monitoring
Reexamination Certificate
1999-03-03
2002-04-02
Hoff, Marc S. (Department: 2857)
Data processing: measuring, calibrating, or testing
Measurement system
Remote supervisory monitoring
C340S870030
Reexamination Certificate
active
06366871
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to patient monitoring systems in general, an in particular to apparatus and methods for monitoring a mobile patient's physiological condition and wireless reporting of same.
BACKGROUND OF THE INVENTION
Continuously monitoring a patient's physiological condition generally requires the patient's hospitalization, usually at great cost, especially where long term monitoring is required. In some circumstances a wide variety of out-patient monitoring devices may be used to monitor the physiology of patients who are physically outside of the hospital. Some out-patient monitoring devices have a limited range of operation, requiring monitored patients to remain close to a receiving station and thus limiting his mobility. Other devices are adapted for monitoring mobile or ambulatory patients while they move about in a vehicle or on foot and have a wide range of operation.
One such group of devices includes holter devices which generally record a patient's physiological data, such as the patient's ECG, during predetermined period of time for examination at later time. Other devices include event recorders. These devices provide for the captured of a patient's physiological data during a physiological “event,” such as a cardiac arrhythmia or an episode of patient discomfort. These devices may be patient activated or activated automatically when physiological data are detected which meet predefined event criteria.
Holter devices and event recorders typically require that a patient return to the hospital periodically in order to transfer the recorded data. Some of these devices provide for transmission via telephone or other communications facilities to a remote location for interpretation by a clinician. These devices generally require additional communication and medical testing devices to be present at patient location. In the case of event recorders, unnecessary delay between event recording and transmission is often introduced where such additional devices are not present during the event.
The mobility of high-risk patients must be weighed against the need to monitor a patient's location in order to provide a patient with emergency medical attention should a dangerous event occur.
SUMMARY OF THE INVENTION
The present invention seeks to provide improved apparatus and methods for monitoring a mobile patient's physiological condition and reporting the patient's physiological data as well as the patient's location which overcome the disadvantages of the prior art.
It is an object of the present invention to provide an improved ambulatory monitoring device which monitors a patient's physiological condition and location, contacts a central station, transmits the patient's physiological data and the patient's location coordinates to the central station, and provides voice communications between the patient and a clinician at the central station. The monitoring may be initiated by the patient with or without a periodic reminder, may be initiated by the device itself, may be initiated by the clinician through instruction to the patient, and/or may be performed continuously. The communication between the monitoring device and the central station may be initiated by the patient, by the device itself, or by the clinician at the central station.
There is thus provided in accordance with a preferred embodiment of the present invention ambulatory patient monitoring apparatus including a portable housing including at least one physiological data input device operative to gather physiological data of the patient, location determination circuitry operative to determine geographic location information of the patient, cellular telephone communications circuitry for communicating the physiological data and the geographic location information to a central health monitoring station, voice communications circuitry whereby the patient conducts voice communications with a clinician at the central health monitoring station, digital signal processing circuitry for processing signals associated with any of the physiological data input device, the location determination circuitry, the cellular telephone communications circuitry, and the voice communications circuitry, and control circuitry for controlling any of the digital signal processing circuitry, the physiological data input device, the location determination circuitry, the cellular telephone communications circuitry, and the voice communications circuitry.
Further in accordance with a preferred embodiment of the present invention the at least one physiological data input device is assembled within the housing.
Still further in accordance with a preferred embodiment of the present invention the at least one physiological data input device is at least partially external to the housing.
Additionally in accordance with a preferred embodiment of the present invention the external portion of the at least one physiological data input device is connected to the via housing via a connector.
Moreover in accordance with a preferred embodiment of the invention the location determination circuitry includes GPS circuitry.
Further in accordance with a preferred embodiment of the present invention the control circuitry operates the physiological data input device continuously.
Still further in accordance with a preferred embodiment of the present invention the control circuitry operates the physiological data input device upon initiation by the patient.
Additionally in accordance with a preferred embodiment of the present invention the control circuitry includes a memory for storing any of the physiological data.
Moreover in accordance with a preferred embodiment of the present invention the control circuitry is operative to simultaneously store a first portion of the physiological data in the memory in FIFO fashion and a second portion of the physiological data in the memory that is write-protected with respect to the first portion.
Further in accordance with a preferred embodiment of the present invention the memory includes preset parameters adapted for comparison with the physiological data.
Still further in accordance with a preferred embodiment of the present invention the control circuitry is operative to determine whether the physiological data are within the preset parameters.
Additionally in accordance with a preferred embodiment of the present invention the control circuitry is operative to initiate contact with the central health monitoring station when the physiological data are determined to be outside of the preset parameters.
Moreover in accordance with a preferred embodiment of the present invention the memory includes preprogrammed instructions for output to the patient via either of a display and a speaker.
There is also provided in accordance with a preferred embodiment of the present invention a system for monitoring a patient, the system including a central health monitoring station, and a portable housing for use by the patient, the portable housing including at least one physiological data input device operative to gather physiological data of the patient, location determination circuitry operative to determine geographic location information of the patient, cellular telephone communications circuitry for communicating the physiological data and the geographic location information to the central health monitoring station, voice communications circuitry whereby the patient conducts voice communications with a clinician at the central health monitoring station, digital signal processing circuitry for processing signals associated with any of the physiological data input device, the location determination circuitry, the cellular telephone communications circuitry, and the voice communications circuitry, and control circuitry for controlling any of the digital signal processing circuitry, the physiological data input device, the location determination circuitry, the cellular telephone communications circuitry, and the voice communication
Card Guard Scientific Survival Ltd.
Eitan Pearl Latzer & Cohen-Zedek
Hoff Marc S.
Raymond Edward
LandOfFree
Personal ambulatory cellular health monitor for mobile patient does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Personal ambulatory cellular health monitor for mobile patient, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Personal ambulatory cellular health monitor for mobile patient will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2910463