Peroxides, their preparation process and use

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbonate esters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C558S266000, C568S561000

Reexamination Certificate

active

06770774

ABSTRACT:

The present invention relates to particular peroxides, mixtures comprising one or more of these peroxides, their preparation process, and their use. More particularly, the present invention relates to the preparation process of peroxy esters and peroxy carbonates, peroxy ester peroxy carbonates, mixed diperoxides, mixed diperoxy esters, and mixed diperoxy carbonates, and to specific monoperoxy esters, monoperoxy carbonates, mixed peroxides, mixed diperoxy esters, mixed diperoxy carbonates, peroxy ester peroxy carbonates, and mixtures thereof. Finally, the present invention relates to the use of these peroxides as polymerization initiators, curing agents for unsaturated polyesters, and modifying agents, and to formulations comprising these peroxides.
JP-A-50-23079 discloses the production of symmetric peroxides by reacting a dialkyl ketone hydroperoxyde with an acyl chloride in a two-phase solvent system comprising a polar (aqueous) solvent and an apolar solvent. A monoperoxy ester or monoperoxy carbonate is not formed. The peroxy esters are used in the homopolymerization of ethylene or the copolymerization of ethylene and another ethylenically unsaturated monomer.
JP-A-48-43491 discloses a similar method for the production of diperoxy carbonates.
Because these prior art preparation processes do not result in the formation of monoperoxy ester or monoperoxy carbonate as a major constituent, it is not possible to produce asymmetric diperoxy esters, diperoxy carbonates, and mixed peroxides in a controlled manner.
It is an object of the present invention to provide a new class of monoperoxy esters and monoperoxy carbonates which on the one hand are useful as polymerization initiators, curing agents for unsaturated polyesters, and modifying agents, and on the other serve as a starting material for the production of a novel class of mixed peroxides, mixed diperoxy esters, mixed diperoxy carbonates, and peroxy ester peroxy carbonates which are also useful as polymerization initiators, curing agents for unsaturated polyesters, and modifying agents.
The present invention is based on the insight that by the proper selection of ketone peroxides on the one hand and acid halogen or halogen formate on the other, monoperoxy esters and monoperoxy carbonates are formed in an adjustable relative amount. These monoperoxy esters and monoperoxy carbonates in turn allow the provision of a new class of mixed peroxides, mixed diperoxy esters, mixed diperoxy carbonates, and peroxy ester peroxy carbonates.
Accordingly, the present invention provides a process for the preparation of monoperoxy ester or monoperoxy carbonate having the general formula I:
wherein R
1
and R
2
are independently selected from the group comprising hydrogen, C
1
-C
20
alkyl, C
3
-C
20
cycloalkyl, C
6
-C
20
aryl, C
7
-C
20
aralkyl, and C
7
-C
20
alkaryl, or R
1
and R
2
form a C
3
-C
12
cycloakyl group, which groups may include linear or branched alkyl moieties, and each of R
1
and R
2
may optionally be substituted with one or more groups selected from hydroxy, alkoxy, linear or branched alkyl, aryloxy, halogen, ester, carboxy, nitrile, and amido, and R
3
is independently selected from the group comprising C
1
-C
20
alkyl, C
3
-C
20
cycloalkyl, C
6
-C
20
aryl, C
7
-C
20
aralkyl, and C
7
-C
20
alkaryl, which groups may include linear or branched alkyl moieties, and R
3
may optionally be substituted with one or more groups selected from hydroxy, alkoxy, linear or branched alkyl, aryloxy, halogen, ester, carboxy, nitrile, and amido, which process comprises the reaction of the corresponding ketone peroxide with the general formula II:
wherein R
1
and R
2
have the identified meaning, with a reactive carbonyl compound with the general formula III:
wherein R
3
has the identified meaning and L is a group activating a carbonyl group of the carbonyl compound (III) for reaction with the ketone peroxide (II), in an inert two-phase solvent system comprising a polar solvent and an apolar solvent. Ketone peroxides of formula II are also known as type-3 (T3) ketone peroxides.
The inert two-phase solvent system comprises a polar solvent and an apolar solvent. Preferably the polar solvent is an aqueous alkali comprising phase. The apolar solvent is not miscible with the polar solvent. A solvent is a polar solvent when its dipole moment is larger than 0D, and preferably larger than 0.5D, in other words, when it has a certain polarity. A solvent is an apolar solvent when its dipole moment is 0.5D or less, preferably essentially 0D. The apolar solvent has substantially no polarity.
Suitable polar solvents comprise alcohols, cycloalkanols, ethers, alkylene glycols, amides, aldehydes, ketones, esters, halogenated hydrocarbons such as chlorinated hydrocarbons, and mixtures thereof. The use of polar solvents like anhydrides, carbonates, and epoxides is less desired since they are not fully inert.
However, an aqueous (alkali) phase is preferred as the polar solvent.
Suitable apolar solvents generally are hydrocarbon solvents, aromatic hydrocarbon solvents, aralkyl solvents, paraffinic oils, white oils, and silicone oils, as well as their mixtures. Useful hydrocarbon solvents include, but are not limited to, benzene, xylene, toluene, mesitylene, hexane, hydrogenated oligomers of alkanes such as Isopar® products (ex. Exxon), Shellsol® products (ex Shell), pentane, heptane, decane, isododecane, decalin, and the like. Paraffinic oils useful as apolar solvents comprises for instance paraffinic diesel oil. Other oils, including white oils, epoxidized soybean oils, and silicone oils are also useful in the present invention.
By properly selecting the equivalent amount of the carbonyl compound used in the preparation process, the amount of monoperoxy ester and monoperoxy carbonate can be adjusted further. The amounts are preferably selected such that at least 10% by weight of the desired product is formed. More preferably such that at least 25% by weight of these products is formed. Even more preferably, the amount of acid halogen or halogen formate is in the range of 0.5-5 equivalents, so that the amount of monoperoxy ester and monoperoxy carbonate formed is at least 50% of the produced peroxides. Using 0.9-2.5 equivalents the selectivity is increased further. Most preferred is an equivalent amount in the range of 1-2 equivalents. Then the selectivity generally is above 60%, such as above 80% or even above 90%. This selectivity may be expressed in the mono:bis ratio.
The reaction conditions are conventional. The temperature generally is in the range of −10 to 50° C. and suitably between 0-30° C. A practical range is from 5 to 15° C. Essentially the temperature is selected such that side reactions and decomposition of the materials are avoided. The pH is basic, i.e. above 7. Generally, the pH is in the range of 9-14. In practice, the pH is above 10, and a practical range is from 11 to 13.5. The reaction proceeds under ambient pressure and in free contact with the atmosphere.
Suitable ketone peroxides for the reaction with the carbonyl compound are those derived from the following ketones: acetone, acetophenone, methyl-n-amyl ketone, ethylbutyl ketone, ethylpropyl ketone, methylisoamyl ketone, methylheptyl ketone, methylhexyl ketone, ethylamyl ketone, diethyl ketone, dipropyl ketone, methylethyl ketone, methylisobutyl ketone, methylisopropyl ketone, methylpropyl ketone, methyl-n-butyl ketone, methyl-t-butyl ketone, isobutylheptyl ketone, diisobutyl ketone, methoxy acetone, cyclohexanone, 2,4,4-trimethyl cyclo hexanone, N-butyllevulinate, ethylacetoacetate, methylbenzyl ketone, phenylethyl ketone, methylchloromethyl ketone, methylbromomethyl ketone, and coupling products thereof. Other ketones having the appropriate R
1
and R
2
groups corresponding to the peroxides of the formula II can also be employed.
L may be any group that activates the carbonyl group of the carbonyl compound for reaction with a hydroperoxide group of the ketone peroxide, and substantially does not interfere with this reaction. Suitable examples of L are halogen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Peroxides, their preparation process and use does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Peroxides, their preparation process and use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Peroxides, their preparation process and use will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3294346

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.