Permission system for controlling interaction between...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Automatic route guidance vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S202000, C701S117000, C701S301000, C340S436000, C348S119000

Reexamination Certificate

active

06799100

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention is related in general to autonomous vehicles and other equipment operating in a surface facility and, in particular, to a system for controlling the interaction among autonomous vehicles and between autonomous and manned vehicles to ensure safety and efficiency in a surface mine.
2. Description of the Related Art
It is known that traffic of manned or autonomous vehicles in a system can be controlled by tracking the position of each moving component in the system and by communicating with each vehicle from a central location, from a peripheral position, or directly from other vehicles, to guide the vehicle safely along a desirable course. Air-traffic control systems represent a good example of such an approach. The position of each aircraft is continuously monitored by one of many air-traffic control centers that is also in constant communication with the aircraft, ready to alert its crew of any impending danger or other situation deserving of attention. When the aircraft is unmanned, the communication includes control signals to an on-board computer that controls the flight of the craft through appropriate software and electronic and mechanical hardware. That is how an unmanned spacecraft is guided in flight. Thus, for the purposes of this disclosure, the term “autonomous” is intended to refer to the availability of either on-board or off-board supervisory systems for directing and/or controlling the movement of a vehicle.
Surface mines utilize a variety of work machines for excavating and transporting ore, grading and stabilizing roadways and slopes in the mine pit, and for providing all support functions necessary for the operation of a mine. Most work and haulage machines have been human-operated in the past, as mobile pieces of equipment constantly being maneuvered around the surface of the mine. Skilled operators ensure that each machine or vehicle is positioned in the right place and optimally oriented to perform its intended function while avoiding accidents and injury to people and property. In order to improve efficiency, much effort is currently under way to develop automated systems for controlling the operation of such work machines in surface mines and other similar environments.
Autonomous vehicles in a surface mine operation include mechanical hardware, a computer and appropriate software for implementing the various functions of the machine in response to control inputs provided by a control system. In a fashion similar to the guidance of unmanned aircraft, an autonomous vehicle can be monitored and guided by a central or satellite center transmitting control signals to the vehicle's on-board computer based on current mine conditions and in response to position data communicated by the vehicle. Knowing the current position of the vehicle with respect to known fixed obstacles and other mine equipment, the vehicle can be maneuvered to destination by the continuous control of its operating functions (for example, steering-wheel, accelerator and brake position of a truck). An on-board satellite-based positioning system (such as GPS) or an equivalent positioning unit (either of which can be supplemented with an inertial navigation system or the like) can be used to determine the current position of the vehicle, with an on-board transmitter/receiver unit to communicate with the control center, and on-board microprocessing and storage modules with appropriate hardware and software to effect the actual movement of the vehicle. Every operating function is manipulated to cause the vehicle to follow a predetermined course or set of courses modified according to current control instructions to meet particular up-to-date traffic conditions. Hazards can be avoided by implementing a predetermined control response when a hazard is identified by the system. For example, if a potential obstacle is detected within a certain distance of the vehicle being monitored, the course of the vehicle can be modified to avoid a collision.
This approach to traffic control has been found to be effective for systems operating at near steady state most of the time, just as in the case of airplanes that follow predetermined flight paths from a starting point to a destination. When rapidly changing conditions exist, though, such as within the traffic of a surface mine where multiple vehicles and other equipment cross paths and change direction and speed as required to perform multifaceted functions and to meet continuously changing optimal mine-operation alternatives, such a rigid, strictly reactive system of accident prevention is not adequate. A large degree of flexibility is required to distinguish between different kinds of hazards. For example, while an unidentified obstacle approaching a vehicle traveling at 30 miles per hour along a predetermined path on a mine road may warrant the immediate stoppage of the vehicle, the approaching of a known potential obstacle, such as another vehicle traveling in the opposite direction, may only require a reduction in speed and an additional precautionary adjustment, such as a shift to the appropriate side of the roadway.
In U.S. Pat. No. 5,629,855, Kyrtsos et al. describe a novel parabolic model and processing algorithm for predicting the path and updating the position of an autonomous vehicle based on a combination and filtering operation of previously acquired position values. In the course of explaining the invention, the patent describes many conventional features of autonomous-vehicle systems. For example, it discloses the use of travel-route components assigned to each vehicle to control its motion so as to conform to a target trajectory between locations. The routes are subdivided into segments or paths between fixed nodes along the target trajectories, and these segments are used to progressively effect the travel of the vehicle according to conventional motion-control techniques. Similarly in conventional fashion, typical operational constraints, such as speed limits, are associated with each segment for the performance of predetermined tasks in a safe and/or optimal manner by each vehicle along the assigned trajectories.
Commonly owned U.S. patent application Ser. No. 09/521,436, hereby incorporated by reference, describes a mine traffic and safety control system where the function of each autonomous vehicle is also performed according to a predetermined trajectory related to its particular task and implemented with on-board GPS and two-way communication hardware. The current position of the vehicle is continuously monitored and correlated to the position of potential hazards along its path, so that corrective action can be taken by implementing appropriate, predetermined control strategies. Each vehicle is assigned a “safety envelope” that allows for the vehicle's physical presence and operating tolerances. The safety envelope is characteristic of each vehicle and is defined by a variable space surrounding the vehicle wherein it may be physically present as it travels along its intended course. The shape and size of the safety envelope is dynamically varied to meet safety requirements for current course conditions facing the vehicle as it performs its autonomous function along its predetermined path. The safety envelope is changed according to a predetermined set of rules specific to the vehicle. Intersection locations among the various courses potentially followed by vehicles along roadways and other sites within the mine's property are established dynamically by monitoring current traffic conditions and identifying situations where the safety envelopes of vehicles traveling along approaching courses could overlap.
This concept of “safety envelope” superimposed over conventional notions of motion guidance over a predetermined travel trajectory is one component of a new approach to provide a mine traffic and safety control system capable of flexible, dynamic response. The present invention discloses another component in the implementation of such a system. The

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Permission system for controlling interaction between... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Permission system for controlling interaction between..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Permission system for controlling interaction between... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3269396

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.