Stock material or miscellaneous articles – Structurally defined web or sheet – Discontinuous or differential coating – impregnation or bond
Reexamination Certificate
1997-01-09
2002-05-21
Zirker, Daniel (Department: 1771)
Stock material or miscellaneous articles
Structurally defined web or sheet
Discontinuous or differential coating, impregnation or bond
C428S343000, C502S415000, C502S428000, C055S524000
Reexamination Certificate
active
06391429
ABSTRACT:
This invention relates to permeable structures containing microporous sorbent particulate bonded with a polymeric binder. In another aspect this invention relates to respirators, such as protective face or gas masks, containing a permeable bed or sheet comprising bonded, microporous, adsorbent particulate. In a still further aspect, this invention relates to pressure-sensitive adhesive (PSA) polymer and particulates or beads thereof and to methods of making and using the PSA.
Many useful products and processes employ active or functional particulate materials that interact with fluids by sorbing (adsorbing or absorbing) components from the fluids. Examples of such products are worker respirators containing microporous sorbents that purify workplace breathing air; other examples are water purification systems, catalyst systems, drug delivery systems, and ion exchange resins.
Activated carbon, an active or functional particulate having sorptive properties, is widely used to filter air to protect persons against a variety of toxic or noxious vapors, including war gases, industrial chemicals, solvents, and odorous compounds. The activated carbon is derived, for example, from coal or coconut shells and can be produced in the form of powders, granules, and shaped products. It is employed in individual canisters or pads, as in gas masks. Important properties of commercial activated carbon products include those related to their particle size as well as their pore structure. (
Kirk
-
Othmer Encyclopedia of Chemical Technology
, Fourth Ed., John E. Wiley and Sons, 1992, Vol. 4, “Activated Carbon,” p. 1015-1037.)
The U.S. Occupational Safety and Health Administration has promulgated “Eleven Commandments” on respirator use for workers who may be exposed to workplace hazards (see 29 Code of Federal Regulations, Part 1910. 134 (b), Requirements of a minimal respirator program). Some commercial respirator products approved under such requirements are described, for example, in product bulletins 70-0701-5436-7(535)BE and 70-0701-5436-7(675)11 of the 3M Company and H/S 5666 8/93 of Scott Aviation Company.
U.S. Pat. No. 5,078,132 (Braun et al.) describes a respirator having a porous bonded structure that contains spaced adsorbent granules, that are bonded to one another by certain adherent binder particles, including those of polyurethane. U.S. Pat. No. 4,061,807 (Shaler et al.) and U.S. Pat. No. 4,664,683 (Degen et al.), cited as references in U.S. Pat. No. 5,078,132, describe self-sustaining or self-supporting porous adsorbent bodies or structures made from a mixture of adsorbent granules or particles, such as activated carbon, bonded together or immobilized by certain particulate organic polymer binder, such as acrylics.
In addition to activated carbon, there are other porous sorbent structures that are useful for separating components in gas and liquid streams or for purifying such streams. Examples of other porous sorbent structures include silica gel (a material that appears first to have been developed during the First World War for use in gas masks) and activated alumina (which proved to be superior to silica gel in such gas masks). Other sorbents are the crystalline aluminosilicates or zeolites and molecular sieve adsorbents (formed into macroporous pellets). (Ruthven, D. M.,
Principles of Adsorption and Adsorption Processes
, John Wiley and Sons, 1984, pp. 1-28.)
In many industrial adsorption processes the adsorbent is contacted by the fluid phase in a packed column. Such variables as the particle size, fluid velocity, and bed dimensions affect pressure drop and have an important impact on the processes' economics. (Ruthven,
supra
, p 206.)
Active particles also have been incorporated into fabrics to produce sheets containing the particles. U.S. Pat. No. 3,971,373 (Braun) describes a self-supporting, durable, flexible, conformable, low-pressure-drop, porous, sheet product comprising a web of melt-blown microfibers loaded with particles, such as activated carbon particles. U.S. Pat. Nos. 4,433,024 (Eian), and 4,868,032 (Eian et al.) describe fibrous webs of melt-blown fibers and sorbent particles dispersed therein. U.S. Pat. No. 4,677,019 (von Blücher) describes a process where an aqueous suspension of particles—e.g., activated carbon, and liquid polymer binder such as polyurethanes, polyacrylates, or elastomers—is sprayed onto a carrier fabric and dried. U.S. Pat. No. 4,904,343 (Giglia et al.) describes a wet-laid process in which a water suspension of activated carbon particles and fibrillated acrylic fibers are used to make a permeable fabric. Other examples of articles using active particles are described in U.S. Pat. Nos. 5,124,177 (Kasmark, Jr. et al.), U.S. Pat. No. 4,510,193 (Blücher et al.) and 4,296,166 (Ogino).
U.S. Pat. No. 4,000,236 Redfarn et al.) describes a method of forming a conglomerated, bonded, and preferably molded mass of particles of activated carbon bonded together by a polymer, e.g., a water soluble hydroxy propyl methyl cellulose or water insoluble polyvinyl formal. The polymer is rendered adhesive by permeating a random and loose mass of the carbon particles with a solvent (e.g., water) that is subsequently drained off.
U.S. Pat. No. 4,220,553 (Krause) describes a method of producing a porous block for filtering and drying refrigerant fluids. The method involves molding into a block a mixture of solutions of phenolic resin binder and polyurethane resin binder and an activated adsorbent, passing an alkaline gas through the block to cure the resins, purging the gas by passing air through the block, and heating the block to drive off solvents for the binders.
Small polymeric particles suspended in an aqueous medium can be prepared by suspension polymerization. (
Kirk
-
Othmer Encyclopedia of Chemical Technology
, Third Edition, John Wiley & Sons, Inc., 1982, Vol. 18, pp. 742-743.) The particles produced by suspension polymerization are generally on the order of approximately 0.1-1 mm in diameter. U.S. Pat. No. 3,691,140 (Silver), U.S. Pat. No. 4,166,152 (Baker et al.), U.S. Pat. No. 4,786,696 (Bohnel), U.S. Pat. No. 5,045,569 (Delgado), 4,833,179 (Young et al.), U.S. Pat. No. 4,952,650 (Young et al.), U.S. Pat. No. 5,292,844 (Young et al.), and U.S. Pat. No. 5,374,698 (Young et al.) and published PCT patent application W094/13751 describe particles of inherently tacky or pressure-sensitive adhesive acrylate polymer produced by a suspension polymerization process.
This invention, in one aspect, provides a permeable, self-supporting, shaped structure that can be used—for example, as a filter, mask, or respirator for filtration of gases or vapors, such as air—to remove undesired gaseous components therefrom. The structure comprises a mass or agglomeration of active (or functional) particulate—for example, sorbents such as activated carbon, silica gel, or alumina granules—bonded together with pressure-sensitive adhesive polymer microparticulate distributed in the mass of active particulate. Because the bonding is effected between particulates, namely, the active particulate and the adhesive microparticulate, the bonding is in the nature of spot bonding or point contact where the surfaces of the two particulates are very close to touching or contacting one another at spots or points rather than the bonding being a coating of adhesive on the active particulate. Thus, the surfaces of the bonded active particulate are significantly or essentially exposed or free of bonding adhesive particulate, and the exposed surfaces define most or essentially all of the open interstices in the composite structure that render it permeable. And the bonded structure is flexible (rather than rigid) and thus conformable, due to the viscoelastic or elastic nature of the bonding agent, that is, the PSA polymer. The PSA polymer microparticulate is preferably smaller in size than the active particulate and is preferably distributed or dispersed amongst the active particulate in a small amount sufficient to adhere them together in a unified, flexible, self-supporting, permeable, micr
Barrett Leonard W.
Lu Ying-Yuh
Senkus Raymond
Young Chung I.
3M Innovative Properties Company
Hanson Karl G.
Zirker Daniel
LandOfFree
Permeable shaped structures of active particulate bonded... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Permeable shaped structures of active particulate bonded..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Permeable shaped structures of active particulate bonded... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2875181