Permanent magnet electric rotating machine and electromotive...

Electrical generator or motor structure – Dynamoelectric – Rotary

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06798103

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to a permanent magnet electric rotating machine and an electromotive vehicle using a permanent magnet electric rotating machine and in particularly to a permanent magnet electric rotating machine in which permanent magnets are used as a magnetic flux generating means and an electromotive vehicle such as an electric vehicle which uses the permanent magnet electric rotating machine.
2. Prior Art
Up to now as one kind of an electric rotating machine, a permanent magnet electric rotating machine has been used, in which permanent magnets of the permanent magnet electric rotating machine are used as a magnetic field generating means for a rotor.
As a conventional permanent magnet electric rotating machine, there is a known surface magnet structure permanent magnet electric rotating machine, wherein plural permanent magnets of the permanent magnet electric rotating machine are arranged in parallel and fixed on a surface of a rotor and further adjacent permanent magnets are arranged to have a reversed polarity at a peripheral direction.
However, in the above stated surface magnet structure permanent magnet electric rotating machine, during a high speed rotation there is a possibility of the permanent magnet peeling off due to centrifugal force.
A permanent magnet rotor having a permanent magnet embedding structure permanent magnet electric rotating machine is disclosed in Japanese patent laid-open publication No. Hei 5-76,146. Namely, in the above stated permanent magnet rotor, permanent magnets are inserted in and fixed to holes, such holes extend into an interior portion of the rotor in an axial direction.
Further, so as to aim to simplify a structure for a case in which the rotor having the permanent magnet embedding structure of the permanent magnet electric rotating machine is performed to carry out a skew structure, such a permanent magnet structure of the permanent magnet electric rotating machine is disclosed in Japanese patent laid-open publication No. Hei 5-236,687. Namely, in this permanent magnet structure permanent magnet electric rotating machine, a space is formed from an end face of each of the permanent magnets which are installed in an interior portion of a rotor to an outer periphery of the rotor.
However, in the above stated prior art, there is a problem in which an obtaining of a reluctant torque by auxiliary magnetic poles and a reduction in a cogging torque or a torque pulsation are not incompatible. Hereinafter, in this specification, the torque pulsation indicates one combining both the reluctant torque and the cogging torque.
In the permanent magnet embedding structure permanent magnet electric rotating machine, utilizing the rotor member provided between the adjacent permanent magnets as the auxiliary magnetic pole, a composite vector of an armature magnetomotive force of a stator is controlled to direct toward a side of a rotation direction but not to direct toward a central position direction of the auxiliary magnetic pole, as a result, the reluctant torque can be obtained.
This reluctant torque is added to a main torque generated by the permanent magnets and the entire torque of the permanent magnet electric rotating machine can be increased. Therefore, the efficiency of the permanent magnet embedding structure permanent magnet electric rotating machine can be increased.
On the other hand, in the conventional permanent magnet electric rotating machine, since the permanent magnets always generate a magnetic flux regardless of the existence of an electric power supply, the rotor can always receive a force. The force is one which corresponds to a positional relationship between the permanent magnet and a stator's salient pole portion and during the rotation time the above stated force changes in a pulsed manner. This pulsating force appears as the torque pulsation.
This torque pulsation obstructs a smooth rotation of the rotor, thus causing a problem in which a stable operation of the permanent magnet electric rotating machine cannot be obtained.
In the permanent magnet rotor of the permanent magnet electric rotating machine shown in Japanese patent laid-open publication No. Hei 5-76,146, since the rotor has the auxiliary magnetic poles, it is possible to obtain the reluctant torque. However, since a distance formed between the permanent magnet and the auxiliary magnetic pole is minute in the periphery direction, an abrupt change in a magnet flux density distribution appears in the minute distance portion, accordingly the torque pulsation arises.
On the other hand, in the permanent magnet electric rotating machine shown in Japanese patent laid-open publication No. Hei 5-236,687, the space is formed between the adjacent permanent magnets. In this space, an adherence property fill-up member comprised of a non-magnetic body is located.
Accordingly, the magnet flux density distribution between the adjacent permanent magnets is muted, such that it hardly generates the cogging torque or the torque pulsation. However, the above stated space or the fill-up member does not work as the auxiliary magnetic pole, therefore the reluctant torque can not be obtained.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a permanent magnet electric rotating machine and an electromotive vehicle using a permanent magnet electric rotating machine wherein a torque pulsation can be restrained by obtaining a reluctant torque according to auxiliary magnetic poles.
According to the present invention, a permanent magnet electric rotating machine comprises a stator obtained by a winding on a stator iron core, plural permanent magnet insertion holes for forming magnetic pole piece portions at a side of the stator through auxiliary magnetic pole portions, and a rotor embedding plural permanent magnets in the permanent magnet insertion holes. The rotor is arranged adjacent to the stator with a rotation air gap.
A magnetic gap is provided between at least one of the permanent magnets and at least one of the auxiliary magnetic pole portions which is adjacent to at least one of the permanent magnets in a peripheral direction.
The magnetic gap moderates the change ln the magnetic flux density distribution in the peripheral direction between the permanent magnet and the auxiliary magnetic pole portion, accordingly the torque—pulsation can be decreased.
Therefore, the magnetic gap can be formed merely by the space or by the arrangement or the filling-up of the non-magnetic material.
Further, this magnetic gap can be formed at both ends of the permanent magnets and this magnetic gap can be formed at one end of the peripheral direction of the permanent magnet complying with a request of the rotation direction of the permanent magnet electric rotating machine and a use for applying the permanent magnet electric rotating machine.
However, due to the provision of the above described magnetic gap at the peripheral direction end portion of the permanent magnet, there is a possibility that the positioning of the permanent magnet becomes unstable during the high speed rotation, etc.
For the above stated reasons, according to the present invention, an indented portion is provided at a bottom portion of the permanent magnet, and on the indented portion the permanent magnet is arranged and installed in a stable manner. According to the present invention, a nonmagnetic material member is arranged in the magnetic gap.
Further, since the magnetic gap is enough to moderate the magnetic flux density distribution against the stator, by varying the dimension or the width (space) of the magnetic gap, it is possible to assist the functions of the auxiliary magnetic pole portion.
According to the present invention, a peripheral direction width of the magnetic gap at a face of the stator side (an outer peripheral portion of the stator) is formed larger than a peripheral direction width of the magnetic gap at a face of an anti-stator side (an inner peripheral portion of the stator).
According to the present inventio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Permanent magnet electric rotating machine and electromotive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Permanent magnet electric rotating machine and electromotive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Permanent magnet electric rotating machine and electromotive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3211065

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.