Electrical audio signal processing systems and devices – Hearing aids – electrical – Specified casing or housing
Reexamination Certificate
1998-06-26
2001-03-20
Chan, Wing F. (Department: 2743)
Electrical audio signal processing systems and devices
Hearing aids, electrical
Specified casing or housing
C381S322000
Reexamination Certificate
active
06205227
ABSTRACT:
FIELD OF THE INVENTION
The invention herein generally relates to a miniature electroacoustic instrument and, in particular, a peritympanic hearing instrument suitable for use in humans.
BACKGROUND OF THE INVENTION
Hearing instruments typically are custom-designed to suit the anatomical and audiological needs of an individual user. Because custom-made devices can be very costly, it is desirable to mass-produce a hearing instrument that is relatively inexpensive, readily adaptable to most users' anatomical and audiological requirements, and inconspicuous and lightweight.
There are significant challenges associated with the development of mass-produced hearing instruments. Although the structure of the external auditory canal generally is a sinuous, oval cylinder with three sections, it varies significantly depending on the particular individual. Traversing the canal towards the tympanic membrane, the first section is directed inward, forward, and slightly upward. The next section tends to pass inward and backward. The final section is carried inward, forward, and slightly downward. The outer portion of the ear canal is surrounded by cartilaginous tissue, with the inner portion being surrounded by bone. The canal is lined by a very thin lining of skin, which is extremely sensitive to the presence of foreign objects. Further details of the path and contours of the external auditory canal are described in U.S. Pat. No. 4,870,688, issued to Barry Voroba et al., and in U.S. Pat. No. 5,701,348, issued to Adnan Shennib, both of which are incorporated herein by reference.
U.S. Pat. No. 4,870,688 describes an in-the-canal miniaturized hearing aid contained within a prefabricated earshell assembly composed of a hollow rigid body with a soft, resilient covering fixed to its exterior. The microphone, receiver, amplifier, and battery are all wholly contained within a prefabricated modular sound assembly which snaps into a patient-selectable prefabricated earshell assembly. The soft, resilient covering that is affixed to the exterior of the rigid core is intended to allow the cylindrical or elliptical shape of the in-the-canal hearing aid to more easily conform to the individual variations in a user's auditory canal.
U.S. Pat. No. 5,701,348 describes a hearing device having highly articulated, non-contiguous parts including a receiver module for delivering acoustic signals, a main module containing all of the hearing aid components except the receiver, and a connector that is articulated with both the receiver module and the main module to permit independent movement of the receiver and main modules. Separation of the receiver from the main module, and the receiver's articulation with respect to the main module, is intended to provide at least two degrees of freedom in movement and independent movement of the receiver module with respect to the main module, and visa versa.
Attempts have also been made to provide inserts intended to be used as a part of a hearing aid device. U.S. Pat. No.2,487,038, issued to Jasper Baum, describes an ear insert shaped for insertion into the concha or the outer cavity of an ear. It includes a series of ball-shaped ball-like wall sections each made with sufficiently thick walls so as to give them great stiffness and prevent substantial distortion of the cross-section of the sound-passage portions extending therethrough under the action of external bending forces when the insert is inserted into the curved space of the outer ear cavity. The ball-like wall sections are interconnected by short neck-like sections to readily flex and take up substantially the entire deformation to which the channel insert is subjected. Thin flexible, skirt-like protrusions project in outward and rearward directions from the ball-like wall sections to become wedged against the surrounding surface portions of the outer ear cavity for automatically establishing therewith an acoustic seal.
U.S. Pat. No. 3,080,011, issued to John D. Henderson, describes an ear canal insert with a very soft tip with mushroom-shaped flanges. A flexible mounting tube is considerably stiffer than the material of which the mushroom-shaped head portion flanges are formed so that it can be used to force the insert portion of the device into the ear canal.
U.S. Pat. No. 5,201,007, issued to Gary L. Ward et al., describes earmolds that convey amplified sound from the hearing aid to the ear. An acoustic conduction tube extends into the ear canal and a flanged tip on the conduction tube creates a resonant cavity between the tip and the tympanic membrane. The tip is constructed of a flexible material to form a sealed cavity adjacent the tympanic membrane, permit the seal to be obtained with only slight pressure against the wall of the ear canal, and permit the tip to be oscillated by the natural, unamplified sounds which arrive by air conduction through the ear canal, so that the oscillation can raise the resonant frequencies of the cavity.
Despite numerous attempts including those described above, there remains a need for a mass-produced hearing instrument that is relatively inexpensive, readily adaptable to an individual's atomical and audiological requirements, and that is inconspicuous and lightweight. It has been discovered that the development of a prosthetic device that occupies the region traditionally filled by an in-the-canal (ITC) device, as well as extending significantly into the peritympanic region, is improbable at best without a device that will allow deep penetration into the ear canal by the hearing instrument. Current “one-size-fits-all” hearing instruments are either of the in-the-ear (ITE) or ITC variety. Some have the ability to accommodate the first bend in the ear canal. However, conventional hearing instruments fail to adequately and simultaneously accommodate the first and second bends of a typical ear canal and are generally not capable of comfortably extending significantly into the peritympanic region.
It has also been recognized that hearing instruments typically have small-diameter openings, or sound ports, to let sound propagate from the receiver to the tympanic membrane. A common problem with such devices is that the cerumen, or wax, within the ear canal becomes embedded in the device's sound port. Physical properties of cerumen make it difficult to remove from the sound port and, indeed, the cleaning process may force the cerumen deeper into the sound port.
Cost is also a major consideration in the development of mass-produced hearing instruments. It has been discovered that, of all the components in a hearing instrument, the microphone and receiver (loudspeaker) are generally the most costly. Of these components, the receiver is generally the more costly item. Accordingly, reduction of the cost of the receiver component can significantly lower the cost of manufacturing the hearing instrument. Many receivers are considered to be self contained in that they are mounted within their own metal housing. Generally, such receivers have small solder pads to which electrical connections are made. Such solder connections are sometimes fragile and have been known to break. During manufacturing of hearing instruments with such receivers, great care must be observed so as not to damage the receiver or the solder connections.
It has further been recognized that the housings for shells used in conventional hearing instruments can become difficult and costly to manufacture. Their shapes are generally dictated primarily by the contours of the ear cavity in which they are intended to be positioned, but attempts to reduce the cost and difficulty of manufacturing conventional shells could reduce the available range of shapes and contours. Alternatively, the cost of manufacturing and the complexity of the manufacturing process remain substantial.
Accordingly, it is an object of the invention to provide a peritympanic hearing instrument that overcomes one or more of the disadvantages associated with conventional hearing instruments.
SUMMARY OF THE INVENTION
This invention provid
Leedom Marvin Allan
Mahoney Derek Dwayne
Margicin John Michael
Sjursen Walter Paul
Chan Wing F.
Dabney P.
Hamilton Brook Smith & Reynolds P.C.
Sarnoff Corporation
LandOfFree
Peritympanic hearing instrument does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Peritympanic hearing instrument, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Peritympanic hearing instrument will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2490744