Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai
Reexamination Certificate
1992-12-22
2002-04-30
Low, Christopher S. F. (Department: 1653)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Peptide containing doai
C514S014800, C514S015800, C514S002600, C514S017400, C514S018700, C514S019300, C514S023000
Reexamination Certificate
active
06380163
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates generally to peritoneal dialysis. More specifically, the present invention relates to improved peritoneal dialysis solutions including polypeptides.
It is known to use dialysis to support a patient whose renal function has decreased to the point where the kidneys no longer sufficiently function. Two principal dialysis methods are utilized: hemodialysis; and peritoneal dialysis.
In hemodialysis, the patient's blood is passed through an artificial kidney dialysis machine. A membrane in the machine acts as an artificial kidney for cleansing the blood. Because it is an extracorporeal treatment that requires special machinery, there are certain inherent disadvantages with hemodialysis.
To overcome the disadvantages associated with hemodialysis, peritoneal dialysis was developed. Peritoneal dialysis utilizes the patient's own peritoneum as a semipermeable membrane. The peritoneum is a membranous lining of the; body cavity that due to the large number. of blood vessels and capillaries is capable of acting as a natural semipermeable membrane.
In peritoneal dialysis, a dialysis solution is introduced into the peritoneal cavity utilizing a catheter. After a sufficient period of time, an exchange of solutes between the dialysate and the blood is achieved. Fluid removal is achieved by providing a suitable osmotic gradient from the blood to the dialysate to permit water outflow from the blood. This allows the proper acid-base, electrolyte and fluid balance to be returned to the blood. and the dialysis solution is simply drained from the body cavity through the catheter.
Although there are many advantages to peritoneal dialysis, one of the difficulties that has been encountered is providing a dialysate that includes a suitable osmotic agent. What is required is that a sufficient osmotic gradient is achieved. The osmotic agent is used in the dialysis solution to maintain the osmotic gradient required to cause transport of water and toxic substances across the peritoneum into the dialysis solution.
The appropriate osmotic agent needs to achieve at least a couple criteria. First, it needs to be non-toxic and substantially biologically inert. However, the agent should be metabolizable. Additionally, the agent should not rapidly cross the peritoneal membrane into the blood. By achieving both these criteria, this would allow maintenance of the maximum ultrafiltration gradient, and also would prevent toxicity or accumulation of unwanted substances in the blood.
No currently used substance completely satisfies the criteria for an osmotic agent in a dialysis solution. Presently, the osmotic agent that is most widely used is dextrose. Dextrose is fairly safe and is readily metabolized if it enters the blood. However, one of the problems with dextrose is that it is readily taken up by the blood from the dialysate. Because dextrose crosses the peritoneum so rapidly, the osmotic gradient is dissipated within two to three hours of infusion. This can cause reversal of the direction of ultrafiltration, causing water to be reabsorbed from the dialysate toward the end of the time allowed for the exchange.
Another concern with respect to dextrose is that because it is taken up so rapidly by the blood, it can represent a large proportion of the patient's energy intake. While this may not significantly effect a non-diabetic patient, it can represent a severe metabolic burden to a patient whose glucose tolerance is already impaired. Dextrose can also cause problems with respect to hyperglycemia and obesity.
Still further, a problem with dextrose is with respect 'to the preparation of a dialysis solution. Typically, dialysis solutions, similar to other medical products, are sterilized by heating. Unfortunately, heat sterilization of dextrose at physiological pH's will cause dextrose to caramelize. To compensate for this problem, it is known to adjust the pH of the dialysate to within the range of 5 to 5.5; at this low pH dextrose will not caramelize when heated. However, it is believed that this low pH may be responsible for the pain experienced by some patients on in flow of dialysis solution and may cause other problems, e.g., may effect peritoneal host defense.
To address some of the above concerns, a number of substances have been proposed as alternatives to dextrose. However, none of the proposed materials has proven to be an adequate substitute for dextrose.
For example, dextrans, polyanions, and glucose polymers have been suggested as replacements for dextrose. Because of their high molecular weight, it is believed that their diffusion across the peritoneum and into the blood should be minimized. But, the low osmotic activity per unit mass of these materials dictates the need for larger concentrations (w/v) of these materials in the dialysis fluids in order for them to be effective. Additionally, systemic absorption of these concentrations, mainly through the lymphatics, along with slow metabolism, raises serious concern about the long term safety of these agents.
Small molecular weight substances, have also been explored. These substances include glycerol, sorbitol, xylitol, and fructose. However, these. substances are believed to raise a number of safety concerns while offering no substantial advantages over dextrose.
Amino acids appear to be an attractive substitute for dextrose in peritoneal dialysis solution. Short term studies have indicated that they are well tolerated. However, because of their low molecular weights, they are transported quite rapidly through the peritoneum, resulting in rapid loss of the osmotic gradient. In addition, rapid uptake of amino acids leads to a considerable nitrogen burden and limits the use of amino acids to one to two exchanges per day.
Recently, polypeptides have been explored as a potential class of osmotic agents. It is believed that polypeptides will have a slow transport across the peritoneum, and therefore, maintain a prolonged osmotic gradient between dialysate and blood.
U.S. Pat. No. 4,906,616 to Gilchrist et al and European Patent No. 0218900 to Klein set forth polypeptides as the osmotic agent in a peritoneal dialysis, solution. Each of these patents discusses the substitution of. polypeptides for dextrose; polypeptides are the only osmotic agent utilized in the formulations disclosed.
In Gilchrist et al, the bulk of the polypeptides have a molecular weight of 1100 or greater. Indeed, approximately 50% of the peptides have in excess of 18 amino acid residues. The polypeptides are the only osmotic agent used.(see, e.g., col. 4, lines 33-35).
In Klein, the polypeptides are a mixture of relatively low molecular weight, including an alleged substantial portion between 300 to 2,000 daltons, peptides derived from the enzymatic hydrolysis of a high quality protein. The polypeptides are the only osmotic agents used. Further, as long as the mixture of polypeptide falls within an equivalent weight of 150 to 1,500 and the molecular weight of the polypeptides is between 300 to 2,000 daltons, the polypeptide mixture is sufficient for the needs of Klein.
As set forth in detail in the examples hereinafter in this application, the polypeptide solutions proposed by Klein and Gilchrist et al have very limited clinical utility. Although larger in size, like amino acids, these polypeptide compositions are absorbed from the peritoneum quite rapidly. This leads to uremic symptoms. In addition, these materials contain polypeptides that have the potential of producing allergic reactions. This is due to the size of the polypeptides that are used.
There is therefore a need for an improved peritoneal dialysis solution.
SUMMARY OF THE INVENTION
The present invention provides an improved dialysis solution. The improved dialysis solution provides for the use of specific polypeptides as an osmotic agent with an additional osmotic agent such as dextrose.
To this end, the present invention provides, in an embodiment, a peritoneal dialysis solution comprising as osmotic agents approximately 0.25 to about 4.
Burke Ron
Faict Dirk
Martis Leo
Barrett Robert M.
Baxter International Inc.
Kelly Paula
Low Christopher S. F.
Lukton David
LandOfFree
Peritoneal dialysis solutions with polypeptides does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Peritoneal dialysis solutions with polypeptides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Peritoneal dialysis solutions with polypeptides will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2898227