Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
1999-08-16
2003-06-03
Spivack, Phyllis G. (Department: 1614)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
Reexamination Certificate
active
06573282
ABSTRACT:
The subject matter of each of U.S. application Ser. Nos. 08/528,510, 08/712,881 and 09/199,873 is herein incorported in its entirety by reference. All patents, copending applications and publications referred to herein are, unless noted otherwise, incorporated by reference in their entirety.
FIELD OF THE INVENTION
The present invention relates to compositions and methods for treatment and/or prevention of hyperalgesic states. The compositions, which are formulated for topical and local administration, contain anti-hyperalgesics that are substantially devoid of central nervous system effects, and, thus, have very little, if any, potential for abuse.
BACKGROUND OF THE INVENTION
Pain and Analgesia
Pain has been defined in a variety of ways. For example, pain can be defined as the perception by a subject of noxious stimuli that produces a withdrawal reaction by the subject. The most commonly experienced form of pain may be defined as the effect of a stimulus on nerve endings, which results in the transmission of impulses to the cerebrum. This somatic sensation and normal function of pain, referred to as nociception or nociceptive pain, informs the organism of impending tissue damage. Somatic and visceral free nerve endings, termed nociceptors, initially process such pain signals.
Despite numerous definitions, the brain pathways governing the perception of pain are not completely understood. Sensory afferent synaptic connections to the spinal cord, so-called “nociceptive pathways”, however, have been documented in some detail. The nociceptive pathway, which exists for protection of the organism (such as the pain experienced in response to a burn), is inactive. Activity is initiated by the application of a high intensity, potentially damaging stimulus. This stimulus serves to depolarize certain classes of afferent (sensory) axons of the small unmyelinated category, designed C fibers.
The signal carried by the C fibers travels up the peripheral nerve and into the spinal cord where synapses are made on second order and higher order neurons, which then transmit the pain signal up the spinal cord in the spinothalamic tract ending in the thalamus. Polysynaptic junctions in the dorsal horn of the spinal cord are involved in the relay and modulation of sensations of pain to various regions of the brain, including the periaqueductal grey region. The ventrolateral and ventromedial thalamic nuclei project to the cortex where the pain is then processed with regard to localization and other integrative characteristics.
Opioid Analgesia
Analgesia, or the reduction of pain perception, can be effected directly by decreasing transmission along such nociceptive pathways. Analgesic opiates are thought to act by mimicking the effects of endorphin or enkephalin peptide-containing neurons, which synapse presynaptically at the C-fiber terminal and which, when they fire, inhibit release of substance P from the C-fiber. Descending pathways from the brain are also inhibitory to C-fiber firing. Thus, CNS-mediated analgesia leads to an overall inhibition of the pain transmission.
Agents that selectively block an animal's response to a strong stimulus without obtunding general behavior or motor function is referred to as an analgesic. Opiates, via interaction with specific receptors in the brain and spinal cord, are able to block the release of transmitters from central terminals (Yaksh et al. (1988) In:
Progress in Brain Research, Vol.
77, Chapter 28, Elsevier Science Pub., B. V. pp. 371-94]). They are thus able to increase the intensity of the peripheral stimulus necessary to produce a given pain state. Accordingly, these agents are referred to as analgesics.
Opiate Receptors and Opiate Side Effects
Central opiate receptors (in brain and spinal cord) appear to mediate the effects of systemically administered opiates. Three principal classes of opiate receptors have been identified: &mgr;, &kgr; and &dgr; (Yaksh, T. L.:
Eur. J. Anaesthesiol.
1:201-243, 1984). The use of selective agonists and antagonists have demonstrated that these receptors also appear to mediate peripheral opioid effects. The central and peripheral actions activities of opiates are an important component of their therapeutic utility. It appears that after systemic delivery of opiates such as morphine, the primary effect may be mediated by both sites of action.
On the other hand, many of the principal drawbacks of systemic opiates are the results of their actions within the brain. These actions include sedation, depression of respiration, constipation, nausea and emesis, abuse liability and the development of addiction. These effects serve to limit the utility of opiates for controlling post injury pain. Addiction liability can occur secondary to medical uses of the drug where the central effects lead to an addicted and dependent state.
Because constipation is among the actions of opiates, many agents selected for anti-diarrheal activity act via one or more of these opioid receptors. Also, because of the diverse actions mediated by opioid receptors, such agents also have undesirable central nervous system effects and abuse potential. Because of these diverse activities and the potential for abuse, anti-diarrheal opioid drug development has been directed towards identifying compounds in which the potentially beneficial activities are separated from the activities that lead to abuse and dependence.
During the mid to late 1960's, several agents derived from classes of molecules known to have opioid activity were synthesized. These agents were shown to have naloxone reversible suppressant effects in smooth muscle bioassays and were able to readily displace opioid ligands in receptor binding assays. These results indicated that they act via direct or indirect action with opioid receptors. These compounds were designed to be selective anti-diarrheal opioid receptor (believed to be the &mgr; receptor) agonists that are substantially free from analgesic and habit-forming activities (see, e.q., Shriver et al. (1987) “Loperamide” in
Pharmacological and Biochemical Properties of Drug Substances,
Vol. 3, Goldberg, M. E., ed. Am. Pharm. Assoc., Washington, D.C., p. 462).
Compounds, such as loperamide [4-(p-chlorophenyl)-4-hydroxy-N-N-dimethyl-&agr;,&agr;-diphenyl-1-piperidinebutyramide hydrochloride], and its analogs were among those synthesized. Loperamide was widely reported to be completely devoid of analgesic effects and CNS effects [see, e.g., Jaffe et al. (1980)
Clin. Pharmacol. Ther.
80:812-819] even at relatively high dosages. Subsequent work has explored whether loperamide administered to mice intraparenterally might provide analgesic effects [see, e.g., Takasuna et al. (1994)
Behavioural Pharm.
5:189-195]. Specifically, Takasuna et al. report that suppression of acetic acid-induced writhing was observed when loperamide was administered. The authors note, however, that the writhing response depends on sensorimotor integration, and that drugs may suppress writhing by impairing the subject's motoric ability to respond without affecting the sensory events consequent to the administration of a chemical irritant (see, Takasuna et al. (1994)
Behavioural Pharm.
5:189-195). The authors state that it remains to be determined whether or not loperamide has any analgesic properties.
In contrast to conventional opiates, however, loperamide and analogs thereof and other such agents exhibit little or no analgesic effects as measured in acute pain models, such as the tail clip and hot plate tail withdrawal tests, when given systemically [see, e.g., Stahl et al. (1977)
Eur. J. Pharmacology
46:199-205; Shriver et al. (1981) “Loperamide” in
Pharmacological
&
Biochemical Properties of Drug ubstances
Vol. 3, Goldenberg, Ed., American Pharmaceutical Assn. Press, pp. 461-476; see, also U.S. Pat. Nos. 3,714,159 and 3,884,916]. This absence of CNS effects, including analgesic effects, is believed to be related to the failure of such compounds to effectively cross the blood brain barrier. Thi
Maycock Alan L.
Yaksh Tony L.
Adolor Corporation
Heller Ehrman White & McAuliffe LLP.
Seidman Stephanie L.
Spivack Phyllis G.
LandOfFree
Peripherally active anti-hyperalgesic opiates does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Peripherally active anti-hyperalgesic opiates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Peripherally active anti-hyperalgesic opiates will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3122308