Periodic thermal poling of waveguides for quasi phase matching

Optical: systems and elements – Optical frequency converter – Dielectric optical waveguide type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S122000

Reexamination Certificate

active

06831776

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to methods and apparatus for inducing a varying second-order non-linearity profile in optical fibres and other waveguides, and to waveguides having such a varying second-order non-linearity profile.
Waveguides with periodically varying second-order non-linearities are of interest, since they can be used to provide quasi-phase matching (QPM). In non-linear glasses, QPM is usually achieved by periodically alternating regions with non-linearity (poled sections) and regions without non-linearity (unpoled sections). In this way the phase-mismatch accumulated in each poled section is reset in the unpoled one (where the absence of the non-linearity prevents back conversion), so that in the next poled section the fields have the right phase relation for constructive growth of the generated signals.
QPM devices have potential applications for optically integrated frequency conversion of coherent light sources, wavelength routing in telecommunication systems, all-optical switching via cascading of second-order non-linearities, parametric fluorescence for quantum applications (such as cryptography and metrology), and high speed modulation.
Since its proposal [1] QPM has been implemented in many materials including lithium niobate, semiconductors and polymers. Several configurations have been employed to achieve efficient second-order non-linear optical interactions. QPM allows one to access new wavelengths and to provide higher efficiency and non-critical interaction geometries. QPM also provides flexibility and new possibilities for phase-matching, especially in materials where the birefringence is not high enough to compensate for the dispersion and where modal phase-matching is not desirable in order to avoid the generation of light in higher order modes.
QPM devices can be fabricated by periodic poling of waveguides. Here and throughout this document the term “periodic poling” is used to mean a varying second-order non-linearity profile, not necessarily of a single frequency. Periodic poling exploits the potential of the QPM technology to extend the possibility of efficient frequency conversion to materials which are in widespread use in optical applications, such as silica and germanosilicate optical glass. This is advantageous since silica and some other optical glasses exhibit high transparency, are low cost, have high optical damage thresholds, and are straightforward to integrate with optical fibre and planar waveguide-based systems.
Considering all the aforesaid properties, it is natural to consider periodically poled silica fibre (PPSF) and periodically poled silica waveguides (PPSW) as ideal media for a wide range of QPM processes, such as frequency conversion of fibre lasers, difference frequency generation for routing at telecommunication wavelengths, generation of correlated photon pairs via parametric fluorescence for quantum cryptography and avalanche photodiodes characterisation, and cascading of second-order non-linearities to produce equivalent third order effects (self and cross-phase modulation) for all-optical switching. In addition to the above applications which are based on three-wave-mixing (TWM) processes, periodic modulation of a second order non-linearity (hence the electro-optic coefficient) could be exploited to produce high speed travelling wave electro-optic switches.
Compared to more traditional crystal waveguides, PPSF has the drawback of a lower effective non-linear coefficient (d
eff
), but offers the advantages of: (i) a longer interaction length (L) for the same bandwidth (due to a lower dispersion); (ii) higher damage intensity threshold (I); and (iii) lower loss (&agr;) and refractive index (n), thus keeping high values for the efficiency-factor (d
eff
2
L
2
I/(&agr;n
3
). In particular, the large value of the bandwidth-interaction length product makes PPSF suitable for frequency conversion of short pulses (picosecond and even femtosecond) where low group velocity mismatch between interacting pulses at different frequencies is desirable.
Production of a permanent and large second-order non-linearity in fused silica glass was demonstrated some time ago [2]. However, later initial work on QPM in optical fibres [3] relied on a different process which produced a non-permanent second-order non-linearity. Later work on QPM [4] is based on a permanent and large second-order non-linearity induced in fused silica by a combined thermal and electrical process in which a high voltage is applied between electrodes across a waveguide while the waveguide is maintained at a relatively high temperature. This process which involves elevated temperature is referred to, at least in the present document, as thermal poling. By structuring one of the electrodes, the thermal poling can be selectively induced only in those regions of the waveguide underlying the structured electrode. In this way a varying profile of the second order non-linearity can be induced. This is referred to as periodic thermal poling (PTP), at least in the present document, where it shall be understood that the term “periodic” does not imply that the second order non-linearity profile is necessarily of a single frequency component. More complex profiles are also to be understood to be encompassed by this term.
PTP has been demonstrated in silicate glass bulk [5] and in optical fibre [6] to produce permanently poled structures. The use of planar lithography on a D-shaped fibre to define a patterned electrode for PTP has also been demonstrated [7] and subsequently used for highly-efficient frequency-doubling of femtosecond pulses [8], for high power fibre sources [9], and for parametric fluorescence experiments. A technique for planar lithography has been described [10] and the use of such technique to define periodic structure was suggested, however not supported by any experimental data.
The typical QPM periods for forward three-wave mixing (i.e. the three interacting waves are propagating in the same direction) in glass-based optical fibres and planar waveguides are between 10 and 100 &mgr;m. However for backward interaction (one of the waves is propagating in the opposite direction with respect to the other two waves) periods in the range of 0.3-1 &mgr;m are desirable.
Another interesting feature of glass is the possibility of combining linear refractive index and second-order non-linear gratings in the same fibre or planar waveguide device. This offers the possibility of making, for example, a fibre-based fully-integrated optical parametric oscillator where mirror feed-back is provided by a linear Bragg grating and a second-order non-linear grating provides a gain medium. The combination of linear and non-linear grating could also lead to enhanced efficiency [11].
SUMMARY OF THE INVENTION
According to one aspect of the invention there is provided a method of creating a varying second order non-linearity profile along a waveguide, comprising: providing a waveguide structure with a waveguiding core and a surface adjacent to the waveguiding core; structuring the surface to produce a structured surface defining a varying distance between the structured surface and the waveguiding core along the waveguide; and thermally poling the waveguide structure to generate a varying second order non-linearity profile along the waveguide derived from the varying distance between the structured surface and the waveguiding core.
By the surface structuring the modulation of the second order non-linearity induced by PTP can be enhanced.
The thermal poling preferably also comprises: forming a first electrode on the structured surface and arranging a second electrode so that the waveguiding core lies between the first and second electrodes; and applying a voltage between the first and second electrodes while maintaining the waveguide structure at an elevated temperature.
Owing to the surface structuring, the first electrode can be made continuous alo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Periodic thermal poling of waveguides for quasi phase matching does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Periodic thermal poling of waveguides for quasi phase matching, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Periodic thermal poling of waveguides for quasi phase matching will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3277004

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.