Performance-based control system

Data processing: generic control systems or specific application – Specific application – apparatus or process – Chemical process control or monitoring system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S071000, C700S282000, C700S285000, C137S003000, C137S093000

Reexamination Certificate

active

06510368

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to systems, including method and apparatus, for controlling chemical treatment and water quality within cooling systems by measuring corrosion and fouling to adjust treatment control parameters in the cooling systems.
BACKGROUND OF THE INVENTION
The purpose of a cooling system is to remove heat from a process and discharge that heat to the environment through evaporation and liquid discharge. An example of such systems are cooling water systems used to remove heat from a turbine-condenser. Removing the heat causes steam to condense, resulting in a pressure reduction on the steam-condensate side of the condenser, and an increase in the amount of power generated per unit of fuel used to produce the steam. Similarly, another example of such a system is a refrigeration machine. Such a machine may utilize a refrigerant, such as R-11, R-12 or R-134A, to extract heat from a chilled medium, such as water, loop and transfer the heat to a cooling system.
Another example of a cooling system is one in which heat from a process or series of processes may be transferred to the cooling medium through a process heat exchanger, such as an intercooler on an gas compressor. The operating efficiency of a multi-stage gas compressor, such as an oxygen or nitrogen compressor, may be directly tied to the temperature and pressure of the gas stream entering each stage of the compressor. The higher the temperature and pressure above design conditions, the more power will be required to compress the same amount of gas.
According to one example of a cooling system, the cooling medium includes a liquid, such as water. Such a cooling system may comprise (1) at least one heat exchanger for removing heat from one or more processes; (2) at least one pump for circulating the cooling medium through the at least one heat exchanger; (3) means for cooling the cooling medium, such as a cooling cower; (4) means for adding new cooling medium to the system, such means is typically referred to as makeup; and (5) means for discharging a certain amount of cooling medium from the system, such discharge is referred to as blowdown.
The cooling effect according to such a system may be achieved by evaporating a fraction of the cooling medium into a stream of air as the cooling medium passes over the cooling tower. During the process of removing heat from the cooling medium, unsaturated air may enter the cooling tower. The unsaturated air may pick up the evaporated fluid and exit the cooling tower at a higher temperature and in a saturated state with respect to the cooling medium.
According to another example of a cooling system, a cooling medium, such as water, may be obtained from a large reservoir of the medium that will provide an adequate supply of the cooling medium at a temperature low enough to absorb heat from a process or processes via at least one heat exchanger. In such an example, the cooling system may include (1) a source for the cooling medium; (2) means for circulating the cooling medium, such as at least one circulating pump; (3) at least one heat exchanger; and (5) a place to discharge the heated cooling medium, such as the same body of cooling medium as the source.
Cooling systems that employ liquid cooling media may be subject to deposition of foulant materials and processes, such as, hardness salts, corrosion products, biomass, silt, and mud from the cooling medium, various process leaks, and in-situ corrosion. These foulant materials and processes may be input into the cooling systems from a variety of sources.
Certain treatment materials may be added to the cooling medium or cooling system to inhibit, among other things, hardness deposition, corrosion, formation of biomasses, and agglomeration of other foulants such as silt, mud, corrosion products and process leaks. Such treatment materials may include one or more chemical components that, in combination, effectively inhibit one or more of the above mentioned problems. For example, a treatment material designed to inhibit corrosion may include at least one cathodic inhibitor, at least one anodic inhibitor, and/or at least one additional material, such as anti-scalant(s), surfactant(s) and anti-foam agent(s). Other treatment materials that may be added to the system/medium may include one or more acids, such as sulfuric acid, or one or more alkaline materials, such as a solution of caustic soda. These additional materials may control the pH of the cooling medium within a predetermined control range. When controlling the pH, the acid would be used to lower the pH and the alkali to raise it.
Typically, the amount of treatment material(s) added to the system/medium may be determined by manual laboratory tests, corrosion coupon analyses, the volume of cooling medium in the system and the amount of cooling medium supplied to the system in a given period of time. In such cases, means, such as a chemical injection pump, may be used for injecting a flow of a treatment material into the system at a constant rate over time.
When adding material(s) to adjust pH, a closed loop chemical injection system may be utilized. For example, the system pH may be monitored by a pH monitoring device that controls a pump or valve to increase or decrease the feed of the pH adjusting agent(s).
Treatment materials used to inhibit the deleterious effects of process leaks are typically controlled manually, either on a continuous basis or upon detection of the occurrence of such a leak. Detecting, locating and quantifying a process leak is a time consuming task that may be performed by a plant operator or treatment professional.
Another important aspect of treatment and control of a cooling system and the quality of the cooling medium relates to maintaining the concentration of dissolved and suspended materials in the medium below the level at which they may precipitate or agglomerate. This is typically accomplished by adjusting the amount of concentrated cooling medium removed from the system via blowdown. Typically, this has been done by manual adjustment of a blowdown valve, based on laboratory analysis of the circulating cooling medium. More recently, blowdown has been automated by monitoring the specific conductivity of the cooling medium and adjusting a blowdown valve to maintain a specified range of conductivity within the system.
Typically, a cooling system includes a cooling medium, such as water. The characteristics or properties of the cooling medium may affect the cooling system and its operation. Cooling medium parameters such as pH, conductivity, corrosion rates, temperatures (such as cold supply, hot return, heat exchanger inlet, and outlet, among others), cooling medium recirculation rate, cooling medium make-up rate and cooling medium blowdown rate have long been monitored to control the characteristics of cooling medium. Blowdown may serve to deconcentrate the dissolved solids in the cooling medium and the makeup replaces all cooling medium losses, including those from evaporation, windage, drift and blowdown. Historically, automated control of cooling systems has been based upon on-line measurements of conductivity and pH, for example. Measurements of these parameters may be supplemented by laboratory wet chemistry tests or residual inhibitor level and other parameters relevant to the specific application.
The use of linear polarization resistance technology for on-line measurement of corrosion rates was previously disclosed in U.S. Pat. Nos. 3,069,322, 3,156,631, 3,250,589, 3,607,673 and 3,698,065, the entire disclosures of all of which are hereby incorporated by reference. In U.S. Pat. No. 4,339,945, to Knudsen, and U.S. Pat. No. 4,346,587, to Knudsen et al., the entire disclosures of both of which are hereby incorporated by reference, a methodology was disclosed where in a device in which the measurement of fouling added to pH, conductivity and corrosion is disclosed and applied to determine the effectiveness of a treatment regime in inhibiting corrosion and fouling in fluid systems, such as cooling water. Since corro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Performance-based control system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Performance-based control system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Performance-based control system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3004236

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.