Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
2000-09-18
2004-03-16
Mendez, Manuel (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C128S207290
Reexamination Certificate
active
06706017
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention related to a device for performing a percutaneous ostomy in a body, in particular a tracheostomy. More specifically, the present invention relates to a device and method for atraumatically forming and dilating a tracheostoma and implanting a tracheostomy canula therein.
Tracheostomy is the surgical creation of an opening, tracheostoma, between the trachea and the anterior neck skin, through which opening a tracheostomy canula is placed. This canula directs outside air to the lungs and permits breathing to bypass the upper aerodigestive tract (nose, mouth, pharynx and larynx). Tracheostomy can be performed emergently or electively. In elective tracheostomy patients are usually intubated by means of an endotracheal tube placed through the nose or mouth within the trachea.
Surgical tracheostomy was first codified in the early 1900s by Chevalier Jackson and has become a fairly common and standard procedure. The procedure involves incising the skin, dissecting the pre-tracheal musculature and directly exposing the anterior tracheal wall, which is opened, allowing for the placement of the canula. The tracheostomy canula is a hollow tube typically including a circumferential inflatable cuff. The hollow tube allows for the passage of air necessary for breathing or artificial ventilation and the inflatable cuff provides for a seal between the upper aerodigestive tract and the lower trachea and bronchi, protecting the lungs from fluids and foreign matter. The tracheostomy canula is left in place for a duration, varying from a few days to several years.
Like any procedure, surgical tracheostomy is associated with various risks and complications. In view of the relatively high frequency of tracheostomy complications, a new procedure was developed known as percutaneous tracheostomy. In percutaneous tracheostomy, a puncture is made with a needle through the skin and the needle tip is placed in the trachea. With most currently available devices, some form of a guide wire is then placed through the needle into the trachea and used for the introduction of one or several dilators in order to achieve an opening large enough to allow the introduction of the tracheostomy canula. A variation on this dilatation method is the use of metal spreaders inserted over the needle or the guide wire and used by mechanical spreading to enlarge the opening.
Several devices which are used for performing a percutaneous tracheostomy have been described in the medical literature and/or have been commercialized: In 1969, Toy and Weinstein [Toy F J, Weinstein J D: A percutaneous tracheostomy device. Surgery 65:384-389,1969] described a device using a needle through which a polyethylene tubing is introduced. After removal of the needle, “a bougie, onto which is fixed an endotracheal tube size 5, is then introduced onto the tubing; and the entire device is then thrust by means of a handle fixed on the bougie down into the trachea”. This device was later modified [Toy F J, Weinstein J D: Clinical experience with percutaneous tracheostomy and cricothyroidotomy in 100 patients. J Trauma 26:1034-1040,1986] by incorporating the polyethylene guide onto the bougie-handle piece. This required the use of a needle that is either split or has a slot allowing its removal while the plastic guide remains in place.
Another percutaneous tracheotomy device was proposed by Ciglia et al. [Ciglia P, Firsching R, Syniec C: Elective percutaneous dilatational tracheostomy. A new simple bedside procedure; preliminary report.
Chest
87:715-719,1985]. This technique also uses a needle to puncture the trachea; a guide wire is placed through the needle and 8 dilators of progressively larger diameter are passed over the guide wire to dilate the opening. The canula is than threaded over a mid-size dilator and pushed over the guide wire into the tracheal lumen. A similar device and other devices incorporating minor modifications are commercially available.
A further tracheostomy device is named Rapitrac and was first described by Schachner et al. in 1989 [Schachner A, Ovil Y, Sidi J, Rogev M, Heilbron Y, Levy M J: Percutaneous tracheostomy—a new method.
Crit Care Med
17:1052-1056,1989]. In this device the dilatation is achieved by a metal conus, incorporating a split in the center. The conus is inserted blindly over the needle used for the initial tracheal puncture. This conus is attached to a pair of plastic handles that are squeezed to achieve the dilatation.
Dilators for expanding body tissue having inflatable members are also known in the art. One such device is disclosed in U.S. Pat. No. 5,690,669 to Sauer et al. Sauer discloses a dilator having a fluid dispenser connected to an inflatable member that is insertable through a previously formed incision. The dilator is led to the proper location by way of a guide wire which has been inserted into the body. Once in the proper location, the fluid dispenser is activated to expand the inflatable member and adjacent body tissue. The use of this device however requires an initial incision and the use of a guide wire to properly locate the inflatable member. Furthermore, absent the use of imaging equipment, there is no way to ensure that the inflatable member is properly placed.
A further inflatable dilator is disclosed in U.S. Pat. No. 5,653,230 to Ciaglia et al. A balloon dilational tracheostomy device is disclosed which is used in conjunction with a guide wire to perform a tracheostomy. The device includes a balloon catheter extending through a hollow dilation tube. A tracheal tube or canula is insertable over the dilation tube. In order to use the device, a needle is percutaneously inserted into the trachea and a guide wire is inserted through the needle across the tracheal wall. The needle is then removed and the catheter is threaded over the guide wire and advanced into the trachea. Once in position, the balloon is inflated to create the dilated stoma. The tracheal canula and catheter are advanced until the canula is properly positioned. The catheter may then be removed leaving the canula in place. As with the Sauer device, Ciaglia requires an initial incision and the use of a guide wire. There is also no specific way to determine the precise location of the dilation device within the body.
The above described devices, however, all present difficulties in performing a pecutaneous tracheostomy. Use of the above devices includes uncertainty about the exact location of the needle tip and difficulty confirming that the needle tip is within the tracheal lumen. In order to circumvent these difficulties, it has been suggested that the endotracheal placement of the needle tip can be confirmed by the use of bronchoscopy. The bronchoscope is passed through the endotracheal tube, but this in itself can lead to other problems such as difficulty ventilating the patient and inadvertent extubation. Bronchoscopy is also expensive due to the specialized light sources and equipment required.
Use of a guide wire also leads to complications such as tissue lesions and loss of the tracheostomy pathway because of inadvertent kinking and displacement of the guide wire.
Furthermore, the use of numerous dilators in order to achieve the necessary opening for placing the tracheostomy canula is problematic. Such a system is time consuming and includes the possibility of creating tissue lesions and a false passage. Furthermore, once the largest of the series of dilators is placed, the introduction of the tracheal canula is often difficult because there is no protection for the tracheostomy cuff during its introduction and this sometimes results in a rupture of the cuff. The dilators are also not adapted for all the available tracheostomy canula.
Moreover, positioning of the dilators may also lead to complication. Over insertion of a pointed dilator may inadvertently cause a lesion of the posterior tracheal wall, which could result in serious infections and even death.
Accordingly, it would be desirable to provide a device for expandin
Han Mark K
Hoffman & Baron LLP
Mendez Manuel
LandOfFree
Percutaneous ostomy device and method for creating a stoma... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Percutaneous ostomy device and method for creating a stoma..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Percutaneous ostomy device and method for creating a stoma... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3267070