Percutaneous medical probe and flexible guide wire

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical energy applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S585000, C606S129000

Reexamination Certificate

active

06512958

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to a medical instrument for obtaining access to a site within the body directly inserted through the skin or through an incision in the skin to enable introduction of further medical instruments to the percutaneously accessed site or from the percutaneously accessed site to a more remote site in the body, and more particularly to a combined medical probe and flexible guide wire (or guidewire) for introduction of the further elongated diagnostic or surgical or therapy delivery devices over the guide wire and probe.
2. Description of Related Art
Numerous medical procedures have come into common usage for accessing a site within the body in a minimally invasive manner that avoids surgical exposure of the site to perform a wide variety of diagnostic and therapeutic procedures involving use of a small diameter probe (defined herein as including a needle, a stiff wire, a trocar or the like). Such medical procedures generally involve use of the probe to create a percutaneous (also referred to in the art as transcutaneous or trans-dermal) pathway through the skin and subcutaneous tissue. The probe is either pushed or stuck directly through the patient's skin or is inserted through a small surgical incision in the skin to a particular percutaneously accessed site of interest or to a starting point of an access pathway to a remote site of interest. Then, the percutaneous pathway is expanded in a variety of ways to enable insertion of larger diameter diagnostic, surgical or therapeutic devices. In the course of such procedures, it is common to advance introducers, dilators, and other tubular instruments over the probe and over one another in a prescribed sequence to enlarge the percutaneous pathway by spreading tissue apart. The probe is removed at a particular point in the procedure depending upon the selection of instruments that are used in the sequence of enlarging the percutaneous pathway.
In one approach, the percutaneous pathway that is finally created is defined by the lumen of a hollow tubular catheter or introducer or the like extending from the skin to the accessed site to enable passage of therapeutic or diagnostic or surgical devices therethrough to the accessed site. In another approach, the percutaneous pathway is defined by the outer guiding surface of a hollow or solid core stylet or guide wire extending from the skin to the accessed site to enable over-the-wire advancement of therapeutic or diagnostic or surgical devices to the percutaneous access site.
When the percutaneously accessed site is the site of interest, a diagnostic, surgical or therapeutic device is introduced through the expanded percutaneous pathway in the through-the-lumen or over-the wire manner to perform a procedure or deliver a therapy to the accessed site.
When a more remote site is the site of interest, the same or a further accessing instrument or tool, e.g. an elongated catheter or cannula or guide wire (or a combination of the same used in a predetermined sequence), is advanced through the percutaneous pathway and from the percutaneously accessed site through a remote access pathway to the remote site of interest. The access pathway may be a vascular pathway from an incision into a vein or artery at the percutaneously accessed site that is employed to introduce cardiac catheters and leads or vascular instruments for diagnostic, therapeutic or surgical procedures at remote sites in the heart or in the vascular system. Or the access pathway may be through or into a body organ or cavity or lumen or other structure to the remote site of interest.
Usually, the percutaneous pathway is relatively straight, but the access pathway twists and turns following the anatomy of the body. Typically, the accessing instrument that is left in place extending to the remote site comprises a flexible guide wire or guide catheter that can bend to follow the access pathway. The flexible guide wire or guide catheter then extends from an accessible proximal end left outside the patient's body through the percutaneous pathway and the access pathway to a distal end advanced to the remote site. Then, a diagnostic or surgical or therapeutic instrument is introduced over-the-wire or through-the-lumen to enable a diagnostic or surgical procedure or to provide a therapy at the remote site.
Many therapeutic and/or diagnostic procedures have been developed that involve obtaining access to a desired percutaneous access site or remote site in the body as described above and the implantation of a temporary or permanent electrical stimulation lead, sensor bearing lead or drug delivery catheter that is coupled with a permanently implanted or external pulse generator and/or monitor or drug delivery device. In many procedures, it is desirable to insert a therapeutic or diagnostic lead or catheter having as small an outside diameter as is possible to locate a distal segment thereof at a desired site while minimally displacing body tissue. The electrical stimulation lead, sensor bearing lead or drug delivery catheter is implanted via such a percutaneous pathway and typically extends through an access pathway to locate electrical sensing and/or stimulation electrodes or sensors or drug delivery outlets at the remote site. In permanent implantation procedures, the proximal ends of such sensor and/or electrode bearing leads or catheters are coupled to implantable pulse generators and/or monitors or drug delivery devices that are implanted subcutaneously near the percutaneous pathway or at a distance from the percutaneous pathway. In the latter case, the lead or catheter is relatively long or is attached to a relatively long lead or catheter body that is implanted through a subcutaneous tunnel to the remote medical device.
For example, access to the epidural space of the spinal column and to introduce a stimulation lead into the epidural space is disclosed in commonly assigned U.S. Pat. No. 5,255,691. An epidural needle assembly is employed to reach a percutaneously accessed site in the epidural space, and a stylet stiffened stimulation lead is introduced through the needle lumen and advanced past the percutaneously accessed site through an access pathway in the epidural space to position the lead electrodes at a remote site still within the epidural space. The needle and stylet are withdrawn, and the lead connector elements are connected with an implantable neurostimulator that is implanted subcutaneously in the body.
As noted above, the initial step in forming a percutaneous pathway typically involves use of a probe, such as a stiff, sharp tip or blunt tip, straight needle, that is advanced by a clinician from the skin or skin incision to the percutaneously accessed site. In most cases, the probe is aimed in a carefully determined direction from the skin to the site so that the distal tip of the needle reaches the site of interest with the needle axially aligned to body feature that must be accessed. For example, percutaneous pathways are formed to allow miniaturized neurostimulation leads to be advanced into the spinal column as disclosed, for example, in the above-referenced '691 patent, or through a foramen of the sacrum (as disclosed, for example, in commonly assigned U.S. Pat. Nos. 5,957,965, 6,104,960 and 6,055,456) in carefully determined and particularly sensitive directions.
The direction of advancement of the needle or other probe in three-dimensional space is determined in advance by use of radiographic imaging or palpation of tissue or stealth station technology. The probe is then carefully held and advanced from the skin so that it is axially aligned with the predetermined direction. This procedure is most easily accomplished using a probe that is no longer than necessary to extend from the skin to the percutaneously accessed site. It is easier to accurately aim and advance a short probe than a long probe that extends away from the skin. The probe is necessarily small in diameter and stiff, and such a probe tends to flex and b

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Percutaneous medical probe and flexible guide wire does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Percutaneous medical probe and flexible guide wire, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Percutaneous medical probe and flexible guide wire will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3021882

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.