Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
1999-12-01
2003-03-25
Layno, Carl (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
C607S115000, C607S145000
Reexamination Certificate
active
06539264
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to percutaneous electrical therapy systems for medical use, such as for pain treatment. In particular, the invention relates to a percutaneous electrical therapy system providing sharp point protection.
Electrical therapy has long been used in medicine to treat pain and other conditions. For example, transcutaneous electrical nerve stimulation (TENS) systems deliver electrical energy through electrode patches placed on the surface of a patient's skin to treat pain in tissue beneath and around the location of the patches. The efficacy of TENS systems in alleviating pain is questionable at best, however.
More recently, a technique in which electrodes are placed through the patient's skin into the target tissue has been proposed. Percutaneous Neuromodulation Therapy (“PNT”) (also sometimes called Percutaneous Electrical Nerve Stimulation or “PENS”) using percutaneously placed electrodes achieves significantly better pain relief results than TENS treatments using skin surface electrodes. This therapy is described in Ghoname et al., “Percutaneous Electrical Nerve Stimulation for Low Back Pain,” JAMA 281:818-23 (1999); Ghoname et al., “The Effect of Stimulus Frequency on the Analgesic Response to Percutaneous Electrical Nerve Stimulation in Patients with Chronic Low Back Pain,” Anesth. Analg. 88:841-6 ((1999); Ahmed et al., “Percutaneous Electrical Nerve Stimulation (PENS): A Complementary Therapy for the Management of Pain Secondary to Bony Metastasis,” Clinical Journal of Pain 14:320-3 (1998); and Ahmed et al., “Percutaneous Electrical Nerve Stimulation: An Alternative to Antiviral Drugs for Herpes Zoster,” Anesth. Analg. 87:911-4 (1998). The contents of these references are incorporated herein by reference.
Thus far, PNT practitioners have used percutaneously placed acupuncture needles attached to waveform generators via cables and alligator clips to deliver the therapy to the patient. This arrangement and design of electrodes and generator is far from optimal. For example, the prior art has not addressed the issue of sharps protection for the patients' caregivers and other bystanders. It is therefore an object of this invention to reduce the exposure of electrical therapy patients' caregivers to accidental exposure to bloodborne pathogens, microbes, toxins, etc., via an injury caused by unintended contact with a sharp electrode.
It is a further object of this invention to provide a percutaneous electrical therapy system having electrodes and electrode assemblies that are safe, efficacious, inexpensive and easy to use.
Other objects of the invention will be apparent from the description of the preferred embodiments.
SUMMARY OF THE INVENTION
The invention is a percutaneous electrical therapy system with sharp point protection. In a preferred embodiment, the system includes a control unit; an electrode assembly adapted to deliver electrical therapy to a patient, where the electrode assembly has an electrode electrically connectable to the control unit, the electrode having a sharp point at a distal end adapted to be inserted into the patient's tissue; and a sharp point protection assembly operable with the electrode assembly for reducing risk of unintended exposure to the electrode's point. In some embodiments, the sharp point protection assembly includes a housing to contain at least the sharp point of the electrode when the electrode is in an undeployed state. In some of these embodiments, the sharp point of the electrode may be outside of the housing in a deployed state, the housing being adapted to contain a portion of the electrode in the deployed state. The housing may also be adapted to contain at least the sharp point of the electrode after the electrode has changed from the deployed state to an undeployed state.
In some embodiments, the sharp point protection assembly further has a locking assembly preventing relative movement between the electrode and the housing. The locking assembly may be a spring-biased detent. The system may also include a tool adapted to release the locking assembly and to move the sharp point of the electrode out of the housing. The tool may be further adapted to -move the sharp point of the electrode back into the housing after having moved the sharp point of the electrode out of the housing and to engage the locking assembly to prevent further relative movement between the electrode and the housing.
In some embodiments the electrode assembly has an actuator attached to a proximal end of the electrode, the actuator being disposed within and movable within the housing. The system may also include an actuator tool adapted to interact with the actuator to move the sharp point of the electrode out of the housing. The-actuator tool may be further adapted to move the sharp point of the electrode back into the housing after having moved the sharp point of the electrode out of the housing. The actuator tool may also have an electrical contact adapted to make electrical communication between the electrode and the control unit.
In some embodiments, the housing is adapted to contain none of the electrode when the electrode is in a deployed state in which the sharp point of the electrode has been inserted into the patient's tissue. The housing may be adapted to contain a plurality of electrodes. The system may also include an actuator adapted to move the electrode out of the housing. The housing may be adapted to contain a plurality of electrodes, the actuator being further adapted to move each electrode out of the housing one at a time.
The electrode assembly further may also include a patch adapted to be placed on the patient's skin and to support the electrode in the deployed state. The patch may have an opening adapted to surround a portion of the electrode when the electrode is in the deployed state. The patch may also include an annular member disposed in the patch opening and adapted to engage a handle portion of the electrode. The annular member may have a raised portion disposed above the patch and adapted to engage an aperture of the housing.
The system may also include an electrical connector attachable to the electrode handle portion to make electrical communication between the electrode and the control unit.
In some embodiments, the housing is a first housing, with the sharp point protection assembly further including a second housing to contain at least the sharp point of the electrode when the electrode has moved from the deployed state to an undeployed state. The system may also include an actuator adapted to move the electrode into the second housing. The system may also include an electrode grasper adapted to grasp the electrode in response to movement of the actuator, such as a fork adapted to mate with a handle portion of the electrode. The second housing may also be adapted to contain at least the sharp points of a plurality of electrodes, with the actuator being optionally further adapted to move a plurality of electrodes into the second housing.
In some embodiments, the sharp point protection assembly includes an: aperture in the housing adapted to permit the electrode to pass through for deployment of the electrode.
In some embodiments, the system further comprises a movable actuator adapted to move the sharp point of the electrode into the patient's tissue. The system may also include an actuator limit element limiting movement of the actuator and controlling depth-of insertion of the sharp point of the electrode into the patient's tissue.
In some embodiments, the system may also include an electrode insertion depth control mechanism.
In some embodiments, the system may also include a deployed electrode holding mechanism adapted to hold the electrode in place after insertion of the sharp point of the electrode into the patient's tissue.
In some embodiments, the system may also include an electrode insertion axial stabilizer adapted to provide axial stability to the electrode during insertion of the sharp point of the el
Bishay Jon M.
Leonard Paul
Leyde Kent W.
Layno Carl
Perkins Coie LLP
Vertis Neuroscience, Inc.
LandOfFree
Percutaneous electrical therapy system with sharp point... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Percutaneous electrical therapy system with sharp point..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Percutaneous electrical therapy system with sharp point... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3047994