Perchlorate removal methods

Liquid purification or separation – Processes – Ion exchange or selective sorption

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S683000, C210S719000, C210S724000, C210S748080, C210S757000, C210S902000

Reexamination Certificate

active

06531065

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The instant invention relates to novel processes for the treatment of water. The invention is particularly concerned with processes for reducing the concentration of perchlorate ion from potable water sources.
2. Description of the Related Art
Perchlorate chemicals have been produced commercially in United States since the mid-1940s. Although several different perchlorate salts are manufactured, ammonium perchlorate, for example, is produced almost exclusively as an oxidizer in propellants for solid rocket motors. It is estimated that 90 percent of all perchlorate is used for this purpose. Other perchlorate salts are used in the manufacturing of explosives, fireworks and matches.
However, perchlorate production and processing methods may provide sources of groundwater pollution. Disposal of perchlorate, from manufacturing or utilization sites may occur through aqueous waste tailings, contaminated solid waste or atmospheric deposition. Deposition of these perchlorate-containing materials, usually in ponds, lakes or lagoons, or in hazardous waste landfills, provide direct pathways for groundwater contamination. For example, a primary source of perchlorate contamination is the process used to remove and recover propellant from solid rocket motors. This process consists of a high-pressure water washout of the residual propellant and generates a large quantity of ammonium perchlorate-containing wastewater, some of which enters the ground during processing by spillage. Another historic source of perchlorate contamination results from the limited “shelf life” of ammonium perchlorate, necessitating frequent replacement and disposal of old stocks since the 1950's.
Perchlorate has increasingly been found in sources of potable water. Several states have had confirmed perchlorate contamination in ground water and surface water. The concentration of perchlorate reported in wells and surface water varies widely. For example, in both northern and southern California, perchlorate was detected in 144 public water supply wells (December, 1998) with 38 of these having concentrations greater than a provisional action level of 18 ppb. The highest level of perchlorate reported in any public water supply well was 280 ppb with others greater than 100 ppb. At manufacturing facilities, perchlorate concentrations in groundwater monitoring wells were measured as high as 3.7 million ppb (US Environmental Protection Agency. “Perchlorate Environmental Contamination: Toxicological Review and Risk Characterization Based on Emerging Information.” (NCEA 1-0503) Washington, D.C., Office of Research and Development, 1998).
The primary health concern related to perchlorate contamination is interference with the thyroid gland's ability to utilize iodine to produce thyroid hormones. The basis for the effect on thyroid hormone function is the competitive inhibition between iodide anion and perchlorate anion (ClO
4l

) for thyroid gland uptake, which then results in reduced thyroid hormone production. Thyroid hormones are implicated in a number of metabolic and regulatory processes. In this regard, perchlorate causes problems for normal body metabolism, growth and development through its affect on thyroid hormone regulation.
In view of the possible negative effects towards thyroid-regulated processes, methodologies have been developed to remove perchlorate ion from drinking water. To be considered as a viable drinking water treatment technology, a process must satisfy the following criteria: (i) it must be technically capable of removing targeted pollutant(s), (ii) it must be cost-effective, (iii) it must be acceptable to the regulatory agencies and the public, (iv) it should not cause any water quality or environmental problems, and (v) it should keep waste generation to a minimum.
Ion exchange and reverse osmosis have been shown to remove perchlorate from water. Ion exchange systems, in which the perchlorate ion is replaced by an innocuous anion, e.g., chloride, has received considerable attention. These systems are capable of removing perchlorate from 20-75 ppb to nondetectable levels, such as below 4 ppb. In addition, reverse osmosis can remove between 20 and 1000 ppb of perchiorate from contaminated water with removal efficiencies upwards of 97% (Betts et al. “Rotating Ion-Exchange System Removes Perchlorate.” Environmental Science & Technology News October (1998): 454-455). However, ion exchange and reverse osmosis processes are non-selective and remove other ions which are typically present in far higher concentrations than perchlorate, e.g., chloride, sulfate, bicarbonate. In addition, present perchlorate removal methods generate perchlorate-rich waste brines that require costly disposal.
Removal of toxins through biodegradation is expected to be one of the most cost-effective methods for removing perchlorate from drinking water. Effort has been directed at developing an anaerobic biochemical reduction processes for perchlorate ion. However, the major anticipated problem with biological processes is that biodegradation is usually too slow, especially for low level contaminants.
Another approach to remove perchlorate is by chemically treating contaminated water such that perchlorate is chemically converted to a less toxic product. However, perchlorate is known to be unreactive towards most conventional reducing agents due to slow reaction kinetics and the stability of perchlorate ion makes treatment technologies difficult, especially at low concentration levels. Further, perchlorate is a highly oxidized compound and the chemical reaction between perchlorate and commonly used reducing agents, e.g., thiosulfate, sulfite, iodide, and ferrous ion is too slow to be of practical use. Lastly, many reducing agents including titanium, vanadium, molybdenum, or ruthenium are likely to be too unstable or toxic to be used for a drinking water treatment regimen.
Accordingly, there is a need to develop new and more effective methods for removing perchlorate from water, particularly water intended for potable purposes. Methods that are efficient, safe and inexpensive are particularly desired.
SUMMARY OF THE INVENTION
It is therefore an object of the instant invention to provide new and more efficient methods for removing perchlorate ion from water by chemically treating the water, thereby converting perchlorate to a less toxic product.
It is also an object of the instant invention to provide methods for physically removing perchlorate from water that is both environmentally safe and cost effective.
In accomplishing these and other objectives, there has been provided, in accordance with one aspect of the invention, a method for chemically reducing perchlorate ion concentration in water comprising contacting water containing perchlorate ion with an effective amount of iron metal.
In a preferred embodiment, the effective amount of iron metal is about 10 g/L to about 100 g/L.
In another preferred embodiment, the step of contacting the water with iron metal is performed in the presence of a catalyst, wherein the catalyst is preferably UV light.
In yet another preferred embodiment, the step of contacting the water with iron metal is performed under substantially anoxic conditions.
In still yet another preferred embodiment, the step of contacting the water with iron metal is performed at a pH of about 6 to 8.
In yet another embodiment, the iron metal is in a powdered form or the iron metal is contained within a packed bed.
There is also provided, in accordance with another aspect of the invention, a method for removing perchlorate ion from water comprising contacting the water containing perchlorate ion with iron metal or metal oxide in the presence of phosphoric acid under conditions suitable for perchlorate to adsorb to the iron metal or metal oxide and the removing the iron metal or metal oxide with perchlorate ion bound thereto from the water.
In a preferred embodiment, the iron metal or metal oxide is present at a concentration of about 10 g/L to about 100 g

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Perchlorate removal methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Perchlorate removal methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Perchlorate removal methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3000653

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.