Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai
Reexamination Certificate
2000-10-26
2004-01-06
Russel, Jeffrey E. (Department: 1654)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Peptide containing doai
C435S007240, C514S014800, C514S015800, C514S021800, C530S326000, C530S327000, C530S328000
Reexamination Certificate
active
06673770
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method of identifying peptides useful for the treatment and monitoring of autoimmune diseases, especially arthritis, and to the peptides and proteins thus identified and their use in therapy and monitoring of the disease.
BACKGROUND ART
Autoimmune Diseases
One of the most intriguing characteristics of the immune system is its unlimited specificity. When threatened by potential dangerous foreign substances (antigens), including pathogens, the immune system mounts a tailor-made response. This tailor-made response is provided by the immune system's antigen specific T and B lymphocytes. The virtually unlimited repertoire provided by these immune cells calls for a tight regulatory system preventing unwanted responses against our own (self) antigens. For years it was thought that the immune system was able to discriminate between self and non-self. However, with the growing knowledge of immunology, this theory has become more and more unsatisfactory. The self
on-self paradigm does not explain why perfectly healthy individuals can have circulating autoreactive T and B cells without any symptoms of autoimmune diseases.
Recently, a new concept providing more satisfactory explanations for the lack of autoimmune reactions in healthy individuals has been developed. In this new hypothesis, the decision whether the immune system is activated does not solely depend on the recognition of an antigen as foreign, but also on the immune system's judgment whether it imposes danger to the integrity of the individual. The immune response must be considered as an outcome of a complex interaction between the lymphocyte and the antigen presenting cell (APC) in the context of cognate costimulatory signals, and the local cytokine microenvironment in which the recognition of the specific antigen takes place. This new view on the immune system does not only provide explanations for issues that made us doubt about the self
on-self paradigm, it also provides more insight in the mechanisms of central and peripheral tolerance. In the view of this new concept it is hypothesised that autoimmune diseases are the result of a qualitative or quantitative defect in the regulatory capacity of the immune system to control the naturally occurring autoreactive T-cell repertoire. It is therefore most important to develop novel therapeutic strategies for autoimmune diseases, such as rheumatoid arthritis, that aim at the reestablishment of such regulatory mechanisms of the immune system.
Rheumatoid Arthritis
Rheumatoid Arthritis (RA) is considered to be an autoimmune disease with chronic inflammation of the synovial membrane. RA is the most common inflammatory cause of disability in the western world. The prevalence of RA is approximately 1% of the population (range 0.3 to 2.1 percent); women are affected about three times more often than men. Specific characteristics of patients with RA are a variable degree of joint destruction and symmetric synovitis of their peripheral joints. Although the underlying cellular and molecular mechanisms have remained unclear until now, RA seems to provide a good example of how the interaction between genetic and environmental factors may lead to autoimmunity. Whilst environmental risk factors remain elusive, an association was found of RA with HLA-DR4 or a consensus sequence (QKRAA (SEQ ID NO: 1) or QRRAA (SEQ ID NO: 2)) in the hyper-variable region of the DRB1 molecule. Identification of the underlying cellular and molecular mechanisms leading to RA is complicated by the time of diagnosis. Since the moment of first symptoms is not known, by definition no patients with an early stage of the disease are available. When RA is diagnosed, it is a most destructive joint disease and its clinical course is characterised by involvement of the small joints of the hands and feet followed by centripetal progression to larger joints and finally even to the cervical spine. The histology of the disease is characterised by hyperplastic synovial tissue which is heavily infiltrated by various types of leucocytes. It is very likely that the constant supply of new cells of the immune system is necessary to induce and subsequently maintain the inflammatory process. Growing evidence for the involvement of T cells in RA is provided by the beneficial effect for RA patients from therapy that down regulates the effects of these lymphocytes.
The current treatments for RA are only symptomatic and can be divided into three lines. The first line of therapy consists of treatment with non-steroidal anti-inflammatory drugs (NSAIDs). These drugs can control pain and swelling of the joints, but do not halt the progressive joint destruction associated with the disease. Furthermore, NSAIDs can cause upper gastro-intestinal tract bleeding upon prolonged usage. Where RA remains active despite treatment with NSAIDs (which is usually the case), the second line of therapy can be applied, that consists of treatment with disease modifying anti-rheumatic drugs (DMARDs). These DMARDs, such as penicillamine, chloroquine, gold compounds and sulfasalazine, generally show some beneficial effect after a period of 3-6 months. However, due to severe side effects, treatment with DMARDs has to be stopped in about 25% of the patients. The belief that the immune system is actively involved in the onset and pathogenesis of RA has led to the development of a third line of treatment with strong broad-acting immunosuppressive drugs such as cyclosporin A and methotrexate. These strong immunosuppressive drugs generally have severe side effects, such as nephrotoxicity and in the long-term cancer. Besides the adverse side effects with the currently used anti-rheumatic drugs, the long-term outcome of sequential mono-therapy based on the therapeutic pyramid described above has been disappointing. No substantial evidence has been found proving that the currently used conventional drugs actually arrest the progression of joint destruction. Therefore, alternative strategies such as immunotherapy are clearly needed.
Optimal drugs for the treatment of autoimmune diseases such as RA would be able to attenuate the autoimmune process by re-establishing the immune system's self-regulatory mechanisms that have failed and resulted in the autoimmune attack. Treatment during the early phase of the autoimmune process with such drugs have the potential to arrest the disease process. It has been demonstrated that T cells play a central role in the auto-destructive process in RA (Sigall et al.,
Clin. Exp. Rheum.
6:59 (1988)). Treatments that selectively suppress the activity of such autoreactive T cells can therefore be preferred. Such treatment could consist of the administration of an autoantigen or peptides derived thereof. This type of treatment has been very successful in the suppression of disease symptoms in various experimental autoimmune disease models in laboratory animals (Cremer et al.,
J. Immunol.
131: 2995 (1983); Myers et al.,
Immunol.
90: 161 (1997)). Oral or nasal administration of type II collagen before induction of collagen-induced arthritis can prevent disease induction in this mouse model. However, it is unclear at present time whether native type II collagen is really involved in the primary pathogenesis of RA. Thus the real autoantigens that are the target for autoreactive T cells in RA and that can be used for the generation of a therapeutic formulation for the treatment of RA may not have been identified. Despite the discussion about the role of native type II collagen in the primary pathogenesis of RA, the above described results in animal models have been translated into clinical testing in humans. Initial clinical studies have suggested clinical efficacy of oral toleration for RA with chicken type II collagen (Trentham et al.,
Science
261: 1727 (1993)). However, recent results of a large phase III clinical study have shown that oral treatment with type II collagen does not result in statistical significant clinical benefit for RA patients. Other proteins have
Van Eden Willem
Wauben Marca Henriëtte Michaela
Russel Jeffrey E.
Upither B.V.
LandOfFree
Peptides for the treatment, prophylaxis, diagnosis and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Peptides for the treatment, prophylaxis, diagnosis and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Peptides for the treatment, prophylaxis, diagnosis and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3255763