Peptides-containing liposomal surfactants

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S010100, C514S011400, C514S012200, C514S013800, C514S014800, C424S450000, C604S027000, C604S058000

Reexamination Certificate

active

06613734

ABSTRACT:

TECHNICAL FIELD
The present invention relates to surfactant molecules, including polypeptides, proteins, and a variety of other organic molecules, which are suitable for use in the treatment of respiratory distress syndrome in infants as well as in adults.
BACKGROUND
Naturally-occurring pulmonary surfactant is a complex mixture of lipids and proteins that promotes the formation of a monolayer at the alveolar air-water interface and, by reducing the surface tension, prevents collapse of the alveolus during expiration. Premature infants, and occasionally full term neonates, may lack sufficient endogenous surfactant for normal lung function. This can give rise to a condition termed respiratory distress syndrome (RDS) which may necessitate mechanical ventilation and administration of hyperbaric oxygen. Such intervention, unfortunately, can produce permanent damage to lung tissue and may cause retinopathy of prematurity (ROP) leading to blindness.
Pulmonary surfactant (PS) lines the alveolar epithelium of mature mammalian lungs. Natural PS has been described as a “lipoprotein complex” because it contains both phospholipids and apoproteins that interact to reduce surface tension at the lung air-liquid interface. Natural surfactant contains several lipid species of which dipalmitoyl phosphatidylcholine (DPPC) is the major component together with phosphatidylglycerol (PG) and palmitic acid (PA). At least three specific proteins are also associated, termed SP-A, SP-B and SP-C. Of these three, SP-B and SP-C are distinct, low molecular weight, relatively hydrophobic proteins that have been shown to enhance the surface-active properties of surfactant phospholipid mixtures. It is believed that they facilitate transfer of lipids from the bulk phase lamellar organization to the air-water interface and also stabilize the lipid monolayer during expiration. The structure of SP-B (which is alternatively referred to as SP18) is unusual in that charged amino acids (predominantly basic) are located at fairly regular intervals within stretches of otherwise hydrophobic residues. For the domain consisting of residues 59-80 of the native SP-B sequence, these charged groups have been shown to be necessary for biological activity. In addition, natural and synthetic peptides which are modeled on this hydrophobic-hydrophilic domain when combined with DPPC and PG exhibit good surfactant activity.
Surfactant is stored in lung epithelial cells in the form of lamellar bodies and, following export, it undergoes a structural transition to form tubular myelin before giving rise to a monolayer at the air-water interface. It has been proposed that surfactant proteins SP-A, -B and -C may facilitate these structural transitions and stabilize the lipid monolayer during expansion and contraction of the alveolus; however, an understanding of lipid-protein interactions at the molecular level is presently lacking. The present invention, therefore, has important implications not only with respect to the treatment of RDS in infants as well as adults, but also because of the insight it may provide into lipid-protein interactions in general.
Several exogenous surfactant formulations are currently used in the treatment of infant RDS. While these have reduced morbidity and mortality, continual improvements are needed. In particular, because of the complications that can arise due to mechanical ventilation and administration of hyperbaric oxygen, the sooner normal lung function can be established in a premature infant the more favorable will be the clinical outcome.
Consistent with the foregoing, important characteristics in an exogenous surfactant include the ability to spread rapidly to the alveoli following administration and the ability to maintain a stable monolayer at the alveolar air-water interface so that repeated treatment was not required. The within-disclosed compounds and compositions are believed useful in the preparation of superior exogenous surfactants.
SUMMARY
The present invention discloses a wide variety of surfactant molecules which may be formulated, prepared and utilized as disclosed herein. In various preferred embodiments of the present invention, it is contemplated that the surfactant molecules comprise dipeptides, larger polypeptides, or proteins. In other preferred embodiments, surfactant molecules comprise a variety of organic molecules, including L-amino acids, D-amino acids, substituted amino acids (e.g., amino acids with modified R groups), amino acid metabolites and catabolites, molecules with “designed” side chains, and amino acid mimics or analogs. Molecules comprising dipeptides or polypeptides joined by linkages other than peptide bonds are also encompassed by the present invention; indeed, any organic molecule possessing or exhibiting surfactant activity as described herein is a “surfactant molecule” as contemplated by the present invention.
Therefore, in various preferred embodiments of the present invention, a wide variety of surfactant polypeptides is disclosed. In one embodiment, a preferred polypeptide comprises at least about 4, and more preferably at least about 10, amino acid residues and no more than about 60 amino acid residues and is constituted by alternating groupings of charged amino acid residues and uncharged amino acid residues such that the polypeptide, when admixed with a pharmaceutically acceptable phospholipid, forms a pulmonary surfactant having a surfactant activity greater than the surfactant activity of the phospholipid alone.
In one preferred embodiment, a surfactant polypeptide comprises at least 10 amino acid residues and no more than about 60 amino acid residues and is constituted by alternating groupings of charged amino acid residues and uncharged amino acid residues as represented by the formula [(Charged)
a
(Uncharged)
b
]
c
(Charged)
d
, wherein a has an average value of about 1 to about 5; b has an average value of about 3 to about 20; c is 1 to 10; and d is 0 to 3. It is further preferred that the polypeptide, when admixed with a pharmaceutically acceptable phospholipid, forms a pulmonary surfactant having a surfactant activity greater than the surfactant activity of the phospholipid alone.
In another preferred embodiment, the present invention discloses polypeptides including a sequence having alternating groupings of amino acid residues as represented by the formula (Z
a
J
b
)
c
Z
d
, wherein Z is an amino acid residue independently selected from the group consisting of R, D, E, and K; J is an &agr;-aminoaliphatic carboxylic acid; a has an average value of about 1to about 5; b has an average value of about 3 to about 20; c is 1 to 10; and d is 0 to 3.
In yet another preferred embodiment, surfactant polypeptides are disclosed which have alternating groupings of amino acids residue regions as represented by the formula (B
a
U
b
)
c
B
d
, wherein B is an amino acid residue independently selected from the group consisting of H, 5-hydroxylysine, 4-hydroxyproline, and 3-hydroxyproline; U is an amino acid residue independently selected from the group consisting of V, I, L, C, Y, and F; a has an average value of about 1 to about 5; b has an average value of about 3 to about 20; c is 1 to 10; and d is 0 to 3. In another preferred variation, B is an amino acid derived from collagen and is preferably selected from the group consisting of 5-hydroxylysine, 4-hydroxyproline, and 3-hydroxyproline.
Another preferred embodiment of the present invention discloses polypeptides including a sequence having alternating groupings of amino acid residues as represented by the formula (B
a
J
b
)
c
B
d
, wherein B is an amino acid residue independently selected from the group consisting of H, 5-hydroxylysine, 4-hydroxyproline, and 3-hydroxyproline; J is an &agr;-aminoaliphatic carboxylic acid; a has an average value of about 1 to about 5; b has an average value of about 3 to about 20; c is 1 to 10; and d is 0 to 3. In one preferred variation, J is an &agr;-aminoaliphatic carboxylic acid having four to six carbons, inclusive. In another preferred variation, J is an &agr;

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Peptides-containing liposomal surfactants does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Peptides-containing liposomal surfactants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Peptides-containing liposomal surfactants will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3079844

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.