Peptides capable of inducing immune response to HIV

Chemistry: natural resins or derivatives; peptides or proteins; – Peptides of 3 to 100 amino acid residues – 11 to 14 amino acid residues in defined sequence

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

530328, 4242081, 4242041, 4241841, A61K 3804, A61K 3921, A61K 3900, C07K 500

Patent

active

057566666

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

The present invention relates to peptides each having an amino acid sequence in a partial domain of a protein originated from human immunodeficiency virus (hereinafter referred to as "HIV") and capable of inducing an immune response to HIV and anti-AIDS agents comprising the peptides for preventing and curing AIDS.
It is well-known that acquired immunodeficiency disease syndrome (hereinafter referred to as "AIDS") is a disorder developed by infection with HIV. There have actively been conducted studies for developing medicines for curing the disorder and medicines such as azidothymidine (hereinafter referred to as "AZT") and dideoxyinosine (hereinafter referred to as "DDI") have already been put to practical use. However, these medicines suffer from various problems concerning, for instance, their efficacy and side-effects and accordingly, there has not yet been developed any medicine capable of completely curing the disorder and there has not yet been any prospect for the development of such medicines. On the other hand, as means for preventing infection with HIV and for inhibiting the outbreak of AIDS, vaccines capable of enhancing the immunological competence against HIV infections has been expected to be the last resort which permits the inhibition of the rapid global spread of this disorder and there have been conducted various studies for developing such vaccines. Up to date, various types of such vaccines have been planned and some of them have already been put to clinical trials. However, there has not yet been reported any vaccine which is actually proved to be effective for preventing HIV infections or for inhibiting the crisis of AIDS in human beings.
The following vaccines have conventionally been proposed: of this type may be developed by a method for inducing deletion, through mutation, in a gene which may be involved in the pathogenicity of HIV (Proc. Natl. Acad. Sci. USA, 1987, 84, p. 1434) and an approach which makes use of analogous viruses originated from, for instance, monkeys having an antigenicity common to HIV (Science, 1986, 232, p. 238), but these vaccines cannot be put to practical use with ease because of their potential dangerous factors. virus: Vaccines of this kind may be developed by an approach which makes use of only a part of the antigenic protein among the viral particles produced using a genetic recombination technique, as an immunogen (Proc. Natl. Acad. Sci. USA, 1987, 84, p. 6924; Ann. Int. Med., 1991, 114, p. 119; Nature, 1992, 355, p. 728). This approach has most widely been used and many such vaccines have been put to clinical trials. However, the vaccine of this type suffers from various problems, to be solved, in that it does not have a sufficient neutralizing antibody titer and that it is insufficient in the durability of the antibody titer. Although this approach may be considered to be effective for enhancing the humoral immunity such as the antibody production, it can hardly bring about the activation of the cellular immunity capable of killing infectious cells. The effect of this approach alone on the prevention of infection with HIV cannot necessarily be expected while taking into consideration the mode of infection with HIV. viruses and BCG bacteria: Vaccines of this type can be prepared by integrating a part of an HIV-derived gene sequence into a gene derived from vaccinia viruses (Nature, 1988, 332, p. 728) or BCG bacteria (Nature, 1991, 351, p. 479) which can proliferate in human cells, followed by expressing the recombinant gene. The vaccine of this type would theoretically be expected to exhibit a cellular immunity-enhancing effect. However, these vaccines suffer from such problems that patients whose immunological competence has lowered may seriously be infected even with, for instance, vaccinia viruses which are generally harmless (Lancet, 1991, 337, p. 1034) and that at least the vaccinia-derived recombinant live vaccines which have conventionally been proposed cannot induce any satisfactory immune response. method in wh

REFERENCES:
Fox, 1994, "No winners against AIDS", Biotechnology vol. 12:128.
Butini, et al, "Comparative analysis of HIV-specific CTL . . . " Abstract J306 J. Cell. Biochem, Suppl. 18B.
Koenig, et al, 1990, "Mapping the fine specifcity of . . . " J. Immunnol. 145(1):127-135.
Proc. Natl. Acd. Sci. USA, Vol. 84, pp. 1434-1438, Mar. 1987, Paul A. Luciw, et al., "Mutational Analysis of the Human Immunodeficiency Virus: The orf-B Region Down-Regulates Virus Replication".
Science, vol. 232, pp. 238-243, April 11, 1986, Phyllis J. Kanki, et al., "New Human T-Lymphotropic Retrovirus Related To Simian T-Lymphotropic Virus Type III (STLV-III.sub.AGM)".
Proc. Natl. Acad. Sci. USA, vol. 84, pp. 6924-6928, Oct. 1987, James R. Rusche, et al., "Humoral Immune Response to the Entire Human Immunodeficiency Virus Envelope Glycoprotein Made In Insect Cells".
Annals of Internal Medicine, vol. 114, No. 2, pp. 119-127, Jan. 15, 1991, Raphael Dolin, et al., "The Safety and Immunogenicity of a Human Immunodeficiency Virus Type 1 (HIV-1) Recombinant gp160 Candidate Vaccine in Humans".
Nature, vol. 355, pp. 728-731, Feb. 20, 1992, E.A. Emini, et al., "Prevention of HIV-1 Infection in Chimpanzees By gp120 V3 Domain-Specific Monoclonal Antibody".
Nature, vol. 332, pp. 728-731, Apr. 21, 1988, Daniel Zagury, et al., "A Group Specific Anamnestic Immune Reaction Against HIV-1 Induced By a Candidate Vaccine Against AIDS".
Nature, vol. 351, pp. 479-483, Jun. 6, 1991, Anna Aldovini, et al., "Humoral and Cell-Mediated Immune Responses To Live Recombinant BCG-HIV Vaccines".
The Lancet, vol. 337, pp. 1034-1035, Apr. 27, 1991, J.C. Guillaume, et al., "Vaccinia From Recombinant Virus Expressing HIV Genes".
Proc. Natl. Acad. Sci. USA, vol. 89, pp. 2546-2550, Apr. 1992, Chang-Yuil Kang, et al., "Anti-Idiotype Monoclonal Antibody Elicits Broadly Neutralizing Anti-gp120 Antibodies In Monkeys".
Proc. Natl. Acad. Sci. USA, vol. 86, pp. 6768-6772, Sep. 1989, Kashi Javaherian, et al., "Principal Neutralizing Domain of the Human Immunodeficiency Virus Type 1 Envelope Protein".
Nature, vol. 360, pp. 434-439, Dec. 3, 1992, Adrian V.S. Hill, et al., "Molecular Analysis of the Association of HLA-B53 and Resistance to Severe Malaria".
Clinical Experiments and Microorganisms, ( Rinsho To Biseibutsu),vol. 20, No. 1, pp. 054-062, 1993, Kenji Okuda, et al.
BiOmedica, vol. 8, No. 2, pp. 41-47, 1993, Albert T. Profy.
The Journal of Infectious Diseases, vol. 164, pp. 178-182, 1991, Mario Clerici, et al., "Exposure To Human Immunodeficiency Virus Type 1-Specific T Helper Cell Responses Before Detection of Infection By Polymerase Chain Reaction and Serum Antibodies".
Proc. Natl. Acad. Sci. USA, vol. 85, pp. 3105-3109, May 1988, Hidemi Takahashi, et al., "An Immunodominant Epitope of the Human Immunodeficiency Virus Envelope Glycoprotein gp160 Recognized By Class I Major Histocompatibility Complex Molecule-Restricted Murine Cytotoxic T Lymphocytes".
Nature, vol. 351, pp. 290-297, May 23, 1991, Kirsten Falk, et al., "Allel-Specific Motifs Revealed By Sequencing of Self-Peptides Eluted From MHC Molecules".
Eur. J. Immunol., Vol. 22, pp. 2453-2456, 1992, Olaf Roetzschke, et al., "Peptide Motifs of Closely Related HLA Class I Molecules Encompass Substantial Differences".
Nature, vol. 353, pp. 326-329, Sep. 26, 1991, T.S. Jardetzky, et al., "Identification of Self Peptides Bound to Purified HLA-B27".
Immunogenetics, vol. 38, pp. 161-162, 1993, Kirsten Falk, et al., "Peptide Motifs of HLA-B35 and -B37 Molecules".
Nature, vol. 313, pp. 277-283, Jan. 24, 1985, Lee Ratner, et al., "Complete Nucleotide Sequence of the AIDS Virus, HTLV-III".
Proc. Natl. Acad. Sci. USA, vol. 83, pp. 2209-2213, Apr. 1986, Suresh K. Arya, et al., "Three Novel Genes of Human T-Lymphotropic Virus Type III: Immune Reactivity of Their Products With Sera From Acquired Immune Deficiency Syndrome Patients".
The Journal of Immunology, vol. 142, No. 8, pp. 2911-2917, Apr. 15, 1989, Hans-Gustaf Ljunggren, et al., "Molecular Analysis of H-2-Deficient Lymphoma

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Peptides capable of inducing immune response to HIV does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Peptides capable of inducing immune response to HIV, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Peptides capable of inducing immune response to HIV will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1961679

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.