Peptides as NS3-serine protease inhibitors of hepatitis C virus

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving virus or bacteriophage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S023000, C514S009100, C514S017400, C514S018700, C514S160000, C424S085400, C530S324000, C530S325000, C530S326000, C530S327000, C530S328000, C530S329000

Reexamination Certificate

active

06800434

ABSTRACT:

FIELD OF INVENTION
The present invention relates to novel hepatitis C virus (“HCV”) protease inhibitors, pharmaceutical compositions containing one or more such inhibitors, methods of preparing such inhibitors and methods of using such inhibitors to treat hepatitis C and related disorders. This invention specifically discloses novel peptide compounds as inhibitors of the HCV NS3/NS4a serine protease.
BACKGROUND OF THE INVENTION
Hepatitis C virus (HCV) is a (+)-sense single-stranded RNA virus that has been implicated as the major causative agent in non-A, non-B hepatitis (NANBH), particularly in blood-associated NANBH (BB-NANBH)(see, International Patent Application Publication No. WO 89/04669 and European Patent Application Publication No. EP 381 216). NANBH is to be distinguished from other types of viral-induced liver disease, such as hepatitis A virus (HAV), hepatitis B virus (HBV), delta hepatitis virus (HDV), cytomegalovirus (CMV) and Epstein-Barr virus (EBV), as well as from other forms of liver disease such as alcoholism and primary biliar cirrhosis.
Recently, an HCV protease necessary for polypeptide processing and viral replication has been identified, cloned and expressed; (see, e.g., U.S. Pat. No. 5,712,145). This approximately 3000 amino acid polyprotein contains, from the amino terminus to the carboxy terminus, a nucleocapsid protein (C), envelope proteins (E1 and E2) and several non-structural proteins (NS1, 2, 3, 4a, 5a and 5b). NS3 is an approximately 68 kda protein, encoded by approximately 1893 nucleotides of the HCV genome, and has two distinct domains: (a) a serine protease domain consisting of approximately 200 of the N-terminal amino acids; and (b) an RNA-dependent ATPase domain at the C-terminus of the protein. The NS3 protease is considered a member of the chymotrypsin family because of similarities in protein sequence, overall three-dimensional structure and mechanism of catalysis. Other chymotrypsin-like enzymes are elastase, factor Xa, thrombin, trypsin, plasmin, urokinase, tPA and PSA. The HCV NS3 serine protease is responsible for proteolysis of the polypeptide (polyprotein) at the NS3/NS4a, NS4a/NS4b, NS4b/NS5a and NS5a/NS5b junctions and is thus responsible for generating four viral proteins during viral replication. This has made the HCV NS3 serine protease an attractive target for antiviral chemotherapy.
It has been determined that the NS4a protein, an approximately 6 kda polypeptide, is a co-factor for the serine protease activity of NS3. Autocleavage of the NS3/NS4a junction by the NS3/NS4a serine protease occurs intramolecularly (i.e., cis) while the other cleavage sites are processed intermolecularly (i.e. trans).
Analysis of the natural cleavage sites for HCV protease revealed the presence of cysteine at P1 and serine at P1′ and that these residues are strictly conserved in the NS4a/NS4b, NS4b/NS5a and NS5a/NS5b junctions. The NS3/NS4a junction contains a threonine at P1 and a serine at P1′. The Cys→Thr substitution at NS3/NS4a is postulated to account for the requirement of cis rather than trans processing at this junction. See, e.g., Pizzi et al. (1994)
Proc. Natl. Acad. Sci
(
USA
) 91 :888-892, Failla et al. (1996)
Folding
&
Design
1:35-42. The NS3/NS4a cleavage site is also more tolerant of mutagenesis than the other sites. See, e.g., Kollykhalov et al. (1994)
J. Virol
. 68:7525-7533. It has also been found that acidic residues in the region upstream of the cleavage site are required for efficient cleavage. See, e.g., Komoda et al. (1994)
J. Virol
. 68:7351-7357.
Inhibitors of HCV protease that have been reported include antioxidants (see, International Patent Application Publication No. WO 98/14181), certain peptides and peptide analogs (see, International Patent Application Publication No. WO 98/17679, Landro et al. (1997)
Biochem
. 36:9340-9348, Ingallinella et al. (1998)
Biochem
. 37:8906-8914, Llinàs-Brunet et al. (1998)
Bioorg. Med. Chem. Lett
. 8:1713-1718), inhibitors based on the 70-amino acid polypeptide eglin c (Martin et al. (1998)
Biochem
. 37:11459-11468, inhibitors affinity selected from human pancreatic secretory trypsin inhibitor (hPSTI-C3) and minibody repertoires (MBip) (Dimasi et al. (1997)
J. Virol
. 71:7461-7469), cV
H
E2 (a “camelized” variable domain antibody fragment) (Martin et al.(1997)
Protein Eng
. 10:607-614), and &agr;1-antichymotrypsin (ACT) (Elzouki et al.) (1997)
J. Hepat
. 27:42-28). A ribozyme designed to selectively destroy hepatitis C virus RNA has recently been disclosed (see,
BioWorld Today
9(217): 4 (Nov. 10, 1998)).
Reference is also made to the PCT Publications, No. WO 98/17679, published Apr. 30, 1998 (Vertex Pharmaceuticals Incorporated); WO 98/22496, published May 28, 1998 (F. Hoffmann-La Roche A G); and WO 99/07734, published Feb. 18, 1999 (Boehringer Ingelheim Canada Ltd.).
HCV has been implicated in cirrhosis of the liver and in induction of hepatocellular carcinoma. The prognosis for patients suffering from HCV infection is currently poor. HCV infection is more difficult to treat than other forms of hepatitis due to the lack of immunity or remission associated with HCV infection. Current data indicates a less than 50% survival rate at four years post cirrhosis diagnosis. Patients diagnosed with localized resectable hepatocellular carcinoma have a five-year survival rate of 10-30%, whereas those with localized unresectable hepatocellular carcinoma have a five-year survival rate of less than 1%.
Reference is made to A. Marchetti et al,
Synlett, S
1, 1000-1002 (1999) describing the synthesis of bicylic analogs of an inhibitor of HCV NS3 protease. A compound disclosed therein has the formula:
Reference is also made to WO 00/09558 (Assignee: Boehringer Ingelheim Limited; Published Feb. 24, 2000) which discloses peptide derivatives of the formula:
where the various elements are defined therein. An illustrative compound of that series is:
Reference is also made to WO 00/09543 (Assignee: Boehringer Ingelheim Limited; Published Feb. 24, 2000) which discloses peptide derivatives of the formula:
where the various elements are defined therein. An illustrative compound of that series is:
Current therapies for hepatitis C include interferon-&agr; (INF
&agr;
) and combination therapy with ribavirin and interferon. See, e.g., Beremguer et al. (1998)
Proc. Assoc. Am. Physicians
110(2):98-112. These therapies suffer from a low sustained response rate and frequent side effects. See, e.g. Hoofnagle et al. (1997)
N. Engl. J. Med
. 336:347. Currently, no vaccine is available for HCV infection.
Pending and copending U.S. patent application Serial No. 60/220,110, filed Jul. 21, 2000, Serial No. 60/220,107, filed Jul. 21, 2000, Serial No. 60/220,108, filed Jul. 21, 2000, Serial No. 60/220,101, filed Jul. 21, 2000, Serial No. 60/254,869, filed Dec. 12, 2000, Serial No. 60/194,607, filed Apr. 5, 2000, and Serial No. 60/198,204, filed Apr. 19, 2000 disclose various types of peptides as NS-3 serine protease inhibitors of hepatitis C virus.
There is a need for new treatments and therapies for HCV infection. It is, therefore, an object of this invention to provide compounds useful in the treatment or prevention or amelioration of one or more symptoms of hepatitis C.
It is a further object herein to provide methods of treatment or prevention or amelioration of one or more symptoms of hepatitis C.
A still further object of the present invention is to provide methods for modulating the activity of serine proteases, particularly the HCV NS3/NS4a serine protease, using the compounds provided herein.
Another object herein is to provide methods of modulating the processing of the HCV polypeptide using the compounds provided herein.
SUMMARY OF THE INVENTION
In its many embodiments, the present invention provides a novel class of inhibitors of the HCV protease, pharmaceutical compositions containing one or more of the compounds, methods of preparing pharmaceutical formulations comprising one or more such compounds, and methods of treatment, prevention or amelioration or one or

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Peptides as NS3-serine protease inhibitors of hepatitis C virus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Peptides as NS3-serine protease inhibitors of hepatitis C virus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Peptides as NS3-serine protease inhibitors of hepatitis C virus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3315613

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.