Peptide specificity of anti-myelin basic protein and the...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S012200, C514S014800, C514S015800, C514S016700, C530S300000, C530S326000, C530S327000, C530S328000, C530S329000

Reexamination Certificate

active

06258781

ABSTRACT:

FIELD OF INVENTION
This invention is concerned with selected polypeptides and their use in the immunoregulation of antibodies to human myelin basic protein. This invention also relates to novel pharmaceutical compositions containing these selected polypeptides and to a method of using these peptides for the treatment of Multiple Sclerosis.
BACKGROUND AND PRIOR ART
Multiple sclerosis (MS) is a multifocal demyelinating disease of the human central nervous system (CNS) associated with inflammation. Increased intra-blood-brain barrier (intra-BBB) IgG synthesis is a hallmark of MS (Tourtelotte, W. W., J Neurol Sci 10: 279-304, 1970; Link, H. and Tibbling, G., Scand J Clin Lab Invest 37: 397-401, 1977; Tourtelotte, W. W. and Ma, B., Neurology 28: 76-83, 1978; Walsh, J. M. and Tourtelotte, W. W., In: Hallpike, J. F., Adams, C. W. M. and Tourtelotte, W. W., eds. Multiple sclerosis. Baltimore. Williams & Wilkins, 1982: 275-358; and Warren, K. G., and Catz, I. Ann Neurol 17: 475-480, 1985).
IgG synthesis within the BBB is generally elevated in clinically definite MS patients (Schumacher, G. A., Beebe, G., Kibler R. E., et al., Ann N.Y. Acad Sci 15:266-272, 1965) with active or inactive disease. The specificity of the majority of the CNS IgG is unknown. While a small proportion has antiviral activity or reacts against brain antigens, nucleic acids, erythrocytes or smooth muscle antigens, the nonspecific portion may represent polyclonal activation of B-cells (Tourtelotte, W. W., and Ma, B., Neurology 28:76-83, 1978). During the last decade there has been considerable interest in the study of antibodies to specific myelin proteins.
Following the detection of circulating immune complexes containing myelin basic protein (MBP) as their antigenic component (Dasgupta, M. K, Catz, I, Warren, K. G. et al., Can J Neurol Sci 10:239-243, 1983), increased titers of antibodies to MBP (anti-MBP) were observed in the cerebrospinal fluid (CSF) of patients with active forms of MS (Warren, K. G. and Catz, I., Ann Neurol 209:20-25, 1986). Clinically, MS is characterized by phases of disease activity such as acute relapses or chronic progression, and by phases of clinical remission. Active MS is associated with increased levels of intrathecally produced anti-MBP (Warren, K. G. and Catz, I., Ann Neurol 209:20-25, 1986; and Catz, I. and Warren, K. G., Can J Neurol Sci 13:21-24, 1986). These antibodies are found predominantly in free (F) form during acute relapses and predominantly in bound (B) form when the disease is insidiously progressive (Warren, K. G. and Catz, I., Ann Neurol 209:20-25, 1986). During acute relapses, CSF anti-MBP titers correlated with disease activity (Warren, K. G. and Catz, I., Ann Neurol 21:183-187, 1987). Anti-MBP levels were also increased in patients with first attacks of optic neuritis and in most patients experiencing first attacks of MS (Warren, K. G., Catz, I., and Bauer, C., Ann Neurol 23:297-299, 1988; Warren, K. G. and Catz, I., J Neurol Sci 91:143-151, 1989).
Longitudinal kinetic studies of CSF anti-MBP levels in patients who enter the recovery phase subsequent to an acute relapse, demonstrated a gradual decline in F anti-MBP titers commensurate with a progressive rise in B fractions (Warren, K. G. and Catz, I., J Neurol Sci 91:143-151, 1989; Warren, K. G. and Catz, I., J Neurol Sci 88:185-194, 1988). In the remission phase, CSF anti-MBP may become undetectable suggesting an anti-MBP neutralization associated with inactive phases of MS (Warren, K. G. and Catz, I., J Neurol Sci 88:185-194, 1988). In contrast, chronic-progressive MS characterized by persistence of increased anti-MBP over long periods of time was associated with inhibition of anti-MBP neutralization (Warren, K. G. and Catz, I., J Neurol Sci 88:185-194, 1988). Recently a myelin basic protein antibody cascade, identified in the IgG fraction purified from CSF of MS patients, contained anti-MBP, antibodies which neutralize anti-MBP and antibodies which inhibit anti-MBP neutralization (Warren, K. G. and Catz, I., J Neurol Sci 96:19-27, 1990).
Our previous research has demonstrated from the B-cell autoimmune point of view that there are at least two distinct forms of MS with the majority of patients having auto antibodies to myelin basic protein (anti-MBP) and a lesser number having antibodies to proteolipid protein (anti-PLP) (Warren, K. G. et al., Ann. Neurol. 35, 280-289, 1994). In anti-MBP associated MS, acute relapses are associated with elevated Free (F)/Bound (B) anti-MBP ratios whereas the chronic progressive phase is characterized by lower F/B anti-MBP ratios, and patients in remission less frequently have mildly elevated anti-MBP titers (Warren, K. G. and Catz, I., J. Neurol. Sci. 88, 185-194, 1989).
It has been demonstrated that some of the proliferating T-cells in MS patients are directed towards MBP (Allegretta et al., Science, 247, 718-721, 1990) and that human T-cells can recognize multiple epitopes on the molecule (Richert et al., J. Neuroimmun 23, 55-66, 1989). MBP also appears to be capable of activating some T-cells without the involvement of antigen presenting cells (Altman et al., Eur. J. Immun. 17, 1635-1640, 1987). It is likely that small peptides of MBP may be recognized by T-cells without the requirement for intracellular processing, simply by their ability to bind class II major histocompatibility antigens on the surface of presenting cells.
Since experimental allergic encephalomyelitis (EAE), an accepted animal model of MS, can be induced by inoculating susceptible rodents with either MBP or PLP in conjunction with Freund's complete adjuvant, the process of MS demyelination may have an autoimmune mechanism (Fritz, R. B. et al., J. Immunol. 130, 1024-1026, 1983; Trotter, J. L. et al., J. Neurol. Sci. 79, 173-188, 1987). From B-cell autoantibody point of view, the MBP epitope targeted by the disease process has been localized proximal to the tri-Prolil sequence (residues—99—100—101—) to an area between residues 80 and 100 (Warren, K. G. et al., Ann. Neurol. 35, 280-289, 1994). This B-cell epitope overlaps the immunodominant epitope for T cells reactive to MBP, which are found in MS brain lesions (Oksenberg, J. R. et al., Nature, 362, 68-70, 1993).
Previous studies have shown that anti-MBP is neutralized by MBP. However, previous attempts to treat MS by intramuscular or subcutaneous administration of heterologous MBP have not been successful (Campbell, B., Vogel, R. J., Fisher, E. and Lorenz, R., Arch Neurol 29:10-15, 1973; Gonsette, R. E., Delmotte, P. and Demonty, L., J Neurol 216:27-31, 1977; and Romine, J. S. and Salk, J., In: Hallpike, J. F., Adams, C. W. M. and Tourtelotte, W. W., eds. Multiple sclerosis. Baltimore, Williams & Wilkins, 1982:621-630). The problem with using native MBP is two-fold. The protein is prepared from human brain samples and accordingly there is a potential danger that latent neuroviruses may be present in the sample. Secondly, although MBP is not normally an immunogen, it is possible that when administered to individuals with an altered immune system, MBP could act as an antigen and cause the production of antibodies against MBP.
Accordingly, the present invention determines whether anti-MBP purified from CSF of MS patients with acute relapses could be neutralized by selected peptides of human MBP (h-MBP). For this purpose, synthetic peptides covering the entire length of h-MBP were used to determine the possible epitope range on h-MBP which neutralizes anti-MBP obtained from these patients. Therefore selected peptides, which demonstrate neutralization of anti-MBP, can be used to treat MS more effectively than the full length MBP. These peptides are non-naturally occurring and as such no potential threat of neuroviruses would exist. Additionally, due to their small size, these peptides could not act as an immunogen. Therefore, the use of selected peptides as a treatment for MS, would overcome the problems identified with using the native protein.
Further the peptides of the present invention were investigated to determine their effectiveness in binding or m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Peptide specificity of anti-myelin basic protein and the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Peptide specificity of anti-myelin basic protein and the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Peptide specificity of anti-myelin basic protein and the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2554728

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.