Peptide potentiation of acid-sensory ion channel in pain

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S004000, C435S069100, C435S252300, C435S320100, C530S300000, C530S350000, C536S023500, C436S501000

Reexamination Certificate

active

06635432

ABSTRACT:

BACKGROUND OF THE INVENTION
FMRFamide (Phe-Met-Arg-Phe amide) and related peptides comprise a family of neuropeptides that are abundant in many invertebrates, including
Caenorhabditis elegans
(Nelson, L. S., Kim, K., Memmott, J. E., and Li, C. (1998). FMRFamide-related gene family in the nematode,
Caenorhabditis elegans
. Mol Brain Res 58, 103-111),
Aplysia californica
(Greenberg, M. J., and Price, D. A. (1992). Relationships among the FMRFamide-like peptides. Prog Brain Res. 92, 25-37), and
Drosophila melanogaster
(Schneider, L. E., and Taghert, P. H. (1988). Isolation and characterization of a Drosophila gene that encodes multiple neuropeptides related to Phe-Met-Arg-Phe-NH2 (FMRF amide). Proc Natl Acad Sci USA 85, 1993-1997). In these organisms, FMRFamide-like neuropeptides act as neurotransmitters and neuromodulators. At least one gene encoding FMRFamide-related peptides is present in mammals; it produces neuropeptide FF and neuropeptide AF (A18Famide) (Perry, S. J., Huang, E. Y. K., Cronk, D., Bagust, J., Sharma, R., Walker, R. J., Wilson, S., and Burke, J. F. (1997). A human gene encoding morphine modulation peptides related to NPFF and FMRF amide, FEBS Lett 409, 426-430; Vilim, F. S., Aarnisalo, A. A., Nieminen, M. L., Lintunen, M., Karlstedt, K., Kontinen, V. K., Kalso, E., States, B., Panula, P., and Ziff, E. (1999). Gene for pain modulatory neuropeptide NPFF: induction in spinal cord by noxious stimuli. Mol Pharmacol 55, 804-811). Although FMRFamide itself has not been discovered in mammals (Yang, H. Y. T., Fratta, W., Majane, E. A., and Costa, E. (1985). Isolation, sequencing, synthesis, and pharmacological characterization of two brain neuropeptides that modulate the action of morphine. Proc Natl Acad Sci USA 82, 7757-7761), administration of FMRFamide induces a variety of physiologic effects, including alterations in blood pressure, respiratory rate, glucose-stimulated insulin release, and behavior (Kavaliers, G. M., and Hirst, M. (1985). FMRFamide, a putative endogenous opiate antagonist: evidence from suppression of defeat-induced analgesia and feeding in mice. Neuropeptides 6, 485-494; Kavaliers, M. (1987). Calcium channel blockers inhibit the antagonistic effects of Phe-Met-Arg-Phe-amide (FMRFamide) on morphine- and stress-induced analgesia in mice. Brain Res 415, 380-384; Mues, G., Fuchs, I., Wei, E. T., Weber, E., Evans, C. J., Barchas, J. D., and Chang, J.-K. (1982). Blood pressure elevation in rats by peripheral administration of Tyr-Gly-Gly-Phe-Met-Arg-Phe and the invertebrate neuropeptide, Phe-Met-Arg-Phe-NH2. Life Sciences 31, 2555-2561; Muthal, A. V., Mandhane, S. N., and Chopde, C. T. (1997). Central administration of FMRFamide produces antipsychotic-like effects in rodents. Neuropeptides 31, 319-322; Nishimura, M., Ohtsuka, K., Takahashi, H., and Yoshimura, M. (2000). Role of FMRFamide-Activated Brain Sodium Channel in Salt-Sensitive Hypertension. Hypertension 35, 443-450; Raffa, R. B., Heyman, J., and Porreca, F. (1986) Intrathecal FMRFamide (Phe-Met-Arg-Phe-NH2) induces excessive grooming behavior in mice. Neuroscience Lett 65, 94-98; Sorenson, R. L., Sasek, C. A., and Elde, R. P. (1984). Phe-Met-Arg-Phe-amide (FMRF-NH2) inhibits insulin and somatostatin secretion and anti-FMRF-NH2 sera detects pancreatic polypeptide cells in the rat islet. Peptides 5, 777-782; Tekegdy, G., and Bollók, I. (1987). Amnesic action of FMRFamide in rats. Neuropeptides 10, 157-163; Thiemermann, C., Al-Damluji, S., Hecker, M., and Vane, J. R. (1991). FMRF-amide and L-Arg-1-Phe increase blood pressure and heart rate in the anaesthetized rate by central stimulation of the sympathetic nervous system. Biochem Biophys Res Comm 175, 318-324). In mammals, FMRFamide and neuropeptide FF also modify the response to painful stimuli and are induced by inflammation (Kontinen, V. K., Aarnisalo, A. A., Idanpaan-Heikkila, J. J., Panula, P., and Kalso, E. (1997). Neuropeptide FF in the rat spinal cord during carrageenan inflammation. Peptides 18, 287-292; Raffa, R. B., and Connelly, C. D. (1992). Supraspinal antinociception produced by [D-Met2]-FMRFamide in mice. Neuropeptides 22, 195-203; Tang, J., Yang, H. Y. T., and Costa, E. (1984). Inhibition of spontaneous and opiate-modified nociception by an endogenous neuropeptide with Phe-Met-Arg-Phe-NH2-like immunoreactivity. Proc Natl Acad Sci USA 81, 5002-5005; Vilim, F. S., Aarnisalo, A. A., Nieminen, M. L., Lintunen, M., Karlstedt, K., Kontinen, V. K., Kalso, E., States, B., Panula, P., and Ziff, E. (1999). Gene for pain modulatory neuropeptide NPFF: induction in spinal cord by noxious stimuli. Mol Pharmacol 55, 804-811; Yang, et al. (1985)). When FMRFamide and related peptides are injected intracerebroventricularly, they elicit hyperalgesia and a reduction in morphine-induced analgesia (Brussard, A. B., Kits, K. S., Ter Maat, A., Mulder, A. H., and Schoffelmeer, A. N. M. (1989). Peripheral injection of DNA-RFa, a FMRFa agonist, suppresses morphine-induced analgesia in rats. Peptides 10, 735-739; Kavaliers (1987); Raffa, R. B. (1988). The action of FMRFamide (Phe-Met-Arg-Phe-NH2) and related peptides on mammals. Peptides 9, 915-922; Roumy, M., and Zajac, J. M. (1998). Neuropeptide FF, pain and analgesia. Euro J. Pharm 345, 1-11; Tang et al. (1984); Yang, et al. (1985)). In addition, FMRFamide immunoreactive material is released in mammals following chronic morphine administration, and anti-FMRFamide antibodies can enhance morphine's effects (Devillers, J. P., Boisserie, F., Laulin, J. P., Larcher, A., and Simonnet, G. (1995). Simultaneous activation of spinal antiopioid system (neuropeptide FF) and pain facilitatory circuitry by stimulation of opioid receptors in rats. Brain Research 700, 173-181; Tang, et al. (1984)).
Some effects of FMRFamide and neuropeptide FF appear to be mediated through opioid receptors; these effects are blocked by the opioid antagonist naloxone (Gouardéres, C., Sutak, M., Zajak, J. M. and Jhamandas, K. (1993). Antinociceptive effects of intrathecally administered F8Famide and FMRFamide in the rat. Eur J Pharm 237, 73-81; Kavaliers and Hirst (1985); Kavaliers (1987); Raffa (1988); Roumy and Zajac (1998)). Yet other effects of FMRFamide and FMRFamide-related peptides are independent of opioid receptors and are insensitive to naloxone (Allard, M., Geoffre, S., Legendre, P., Vincent, J. D., and Simonnet, G. (1989). Characterization of rat spinal cord receptors to FLFQPQRFamide, a mammalian morphine modulating peptide: a binding study. Brain Research 500, 169-176; Gayton, R. J. (1982). Mammalian neuronal actions of FMRFamide and the structurally related opioid Met-enkephalin-Arg6-Phe7. Nature 298, 275-176; Kavaliers (1987); Raffa (1988); Raffa, et al. (1986); Roumy and Zajac (1998)). In mammals, the non-opioid receptor(s) for FMRFamide and related peptides have not been identified, and it is not known how these peptides modulate pain sensation. However, the discovery of a FMRFamide-activated Na
+
channel (FaNaCh) in the mollusc
Heix aspersa
(Lingueglia, E., Champigny, G., Lazdunski, M., and Barbry, P. (1995). Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature 378, 730-733) provided a clue that similar receptors might exist in mammals.
Unlike many neuropeptide receptors, FaNaCh is an ion channel gated directly by its peptide ligand, FMRFamide (Lingueglia, et al. (1995)). The neuropeptide receptor, FaNaCh, is a member of the DEG/ENaC family of channels. DEG/ENaC channels are homo- or hetero-multimers composed of multiple subunits (Bassilana, F., Champigny, G., Waldmann, R., de Weille, J. R., Heurteaux, C., and Lazdunski, M. (1997). The acid-sensitive ionic channel subunit ASIC and the mammalian degenerin MDEG form a heteromultimeric H
+
-gated Na
+
channel with novel properties. J. Biol Chem 272, 28819-28822; Coscoy, S., Lingueglia, E., Lazdunski, M., and Barbry, P. (1998). The Phe-Met-Arg-Phe-amide-activated sodium channel is a tetrameter. J Biol Chem 273, 8317-8322; Lingueglia, E., de Weille, J. R., Bassilana, F., Heurteaux, C., Sakai, H., Waldmann

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Peptide potentiation of acid-sensory ion channel in pain does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Peptide potentiation of acid-sensory ion channel in pain, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Peptide potentiation of acid-sensory ion channel in pain will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3146587

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.