Peptide-enhanced cationic lipid transfections

Chemistry: molecular biology and microbiology – Vector – per se

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4351723, 436 71, 530350, C12N 1500, C07K 14005, G01N 3392

Patent

active

057363927

ABSTRACT:
The present invention discloses compositions useful for transfecting eukaryotic cells comprising nucleic acid complexes with peptides, proteins or protein fragments, wherein the peptide is optionally covalently coupled to a DNA-binding group, and cationic lipids useful for transfecting eukaryotic cells. Methods for the preparation of transfecting compositions and use as intracellular delivery agents and extracellular targeting agents are also disclosed.

REFERENCES:
patent: 4946787 (1990-08-01), Eppstein et al.
patent: 5166320 (1992-11-01), Wu et al.
patent: 5354844 (1994-10-01), Beug et al.
patent: 5574142 (1996-11-01), Meyer, Jr. et al.
patent: 5589392 (1996-12-01), Short
Kamata et al. Amphiphilic peptides enhance the efficiency of liposome-mediated DNA transfection Nucleic Acids Res. vol. 22 pp. 536-537, 1994.
Life Technologies Catalog 1993 pp. 9-19.
Grant, D.S. et al. (1989), "Two Different Laminin Domains Mediate the Differentiation of Human Endothelial Cells into Capillary-like Structures In Vitro," Cell 58:933-943.
Gardner, J.M. and Hynes, R.O. (1985), "Interaction of Fibronectin with Its Receptor on Platelets," Cell 42:439-448.
Wickham, T.J. et al. (1995), "Targeting of adenovirus penton base to new receptors through replacement of its RGD motif with other receptor-specific peptide motifs," Gene Therapy 2:750-756.
Pierschbacher, M.D. and Ruoslahti, E. (1987), "Influence of Stereochemistry of the Sequence Arg-Gly-Asp-Xaa on Binding Specificity in Cell Adhesion," J. Biol. Chem. 262(36):17294-17298.
Mason, P.W. et al. (1994), "RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway," Proc. Natl. Acad. Sci. USA 91:1932-1936.
Ruoslahti, E. and Pierschbacher, M.D. (1987), "New Perspectives in Cell Adhesion: RGD and Integrins," Science 238:491-497.
Pierschbacher, M.D. and Ruoslahti, E. (1984), "Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule," Nature 309:30-33.
Dedhar, S. et al. (1987), "A Cell Surface Receptor Complex for Collagen Type I Recognizes the Arg-Gly-Asp Sequence," J. Cell Biol. 104:585-593.
Friedlander, D.R. et al. (1988), "Functional Mapping of Cytotactin: Proteolytic Fragments Active in Cell-Substrate Adhesion," J. Cell Biol. 107:2329-2340.
Humphries, M.J. et al. (1986), "Identification of an Alternatively Spliced Site in Human Plasma Fibronectin That Mediates Cell Type-specific Adhesion," J. Cell Biol. 103:2637-2647.
Suzuki, S. et al. (1985), "Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin," EMBO J. 4(10):2519-2524.
Wayner, E.A. et al. (1989), "Identification and Characterization of the T Lymphocyte Adhesion Receptor for an Alternative Cell Attachment Domain (CS-1) in Plasma Fibronectin," J. Cell Biol. 109:1321-1330.
Lawler, J. et al. (1988), "Cell Attachment to Thrombospondin: The Role of ARG-GLY-ASP, Calcium, and Integrin Receptors," J. Cell Biol. 107:2351-2361.
Haverstick, D.M. et al. (1986), "Inhibition of Platelet Adhesion to Fibronectin, Fibrinogen, and von Willebrand Factor Substrates by a Synthetic Tetrapeptide Derived From the Cell-Binding Domain of Fibronectin," Blood 86(4):946-952.
Humphries, M.J. et al. (1987), "Identification of Two Distinct Regions of the Type III Connecting Segment of Human Plasma Fibronectin That Promote Cell Type-specific Adhesion," J. Biol. Chem. 262(14):6886-6892.
Zhou, X. and Huang, L. (1994), "DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action," Biochim. Biophys. Acta 1189:195-203.
Stegmann, T. et al. (1989), "Protein-mediated membrane fusion," Ann. Rev. Biophys. Biophys. Chem. 18:187-211.
Aumailley, M. et al. (1989), "Cell Attachment Properties of Collagen Type VI and Arg-Gly-Asp Dependent Binding to its .alpha.2(VI) and .alpha.3(VI) Chains," Exp. Cell Res. 181:463-474.
DeRoberts et al., "Intracellular migration of nuclear proteins in Xenopus oocytes," Nature 272:254-256 (1978).
Vaananen et al., "Fusion and Haemolysis of Erythrocytes Caused by Three Togaviruses: Semiki Forest, Sindbis, and Rubella," J. Gen. Virology (1980), 46: 467-475.
Carrasco, L. et al. "Modification of Membrane Permeability in Vaccinia Virus-Infected Cells," (1982), J. Virol. 117:62-69.
Eytan, G.D., "Use of Lipsomes for Reconstitution of Biological Functions," Biochem. Biphys. Acata (1982) 694:185-202.
Young et al., "Interaction of Enveloped Viruses with Planar Bilayer Membranes: Observations on Sendai, Influenza, Vesicular Stomatitis, and Simiki Forest Viruses," Virology (1983) 128:186-194.
Marsh et al., "Interactions of Simiki Forest Virus Spike Glycoprotein Rosettes and Vesicles with Cultured Cells," J. Cell Biol. (1983) 96:455-461.
Schlegel, R. et al., "Inhibition of VSV Binding and Infectivity by Phosphatidylserine: Is Phosphatidylserine a VSV-Binding Site?" Cell 32:639-646 (1983).
Kalderon et al., "A Short Amino Acid Sequence Able to Specify Nuclear Location," Cell 39:499-509 (1984).
Kraaijeveld, S.A. et al., "The effect of liposomal charge on the neutralizing antibody response against inactivated encephalomyocarditis and Simiki Forest Viruses," Clin. Exp. Immunol., (1984)56:509-514.
Schlegel, R. and M. Wade, "Biologically Active Peptides of the Vesicular Stomatitus Virus Glycoprotein," J. Virol. 53(1):319-323 (1985).
Klappe, K. et al., "Parameters Affecting Fusion between Sendai Virus and Liposomes. Role of Viral Proteins, Liposome Composition, and pH," Biochemistry (1986) 25:8252-8260.
Sands, J.A., "Virucidal activity of cetyltrimethylammonium bromide below the critical micelle concentration," FEMS Microbiol. Lett. (1986) 36:261-263.
Scheule, "Novel Preparation of Functional Sindbis Virosomes," Biochemistry (1986) 25:4223-4232.
Lanford et al., "Induction of Nuclear Transport with a Synthetic Peptide Homologous to the SV40 T Antigen Transport Signal," Cell 46:575-582 (1986).
Kaneda et al., "The Improved Efficient Method for Introducing Macromolecules into Cells Using HVJ (Sendai virus) Liposomes with Gangliosides," Exp. Cell Res. (1987) 173:56-69.
Otero, M.J., and Carrasco, L. "Proteins are Cointernalized with Virion Particles during Early Infection," (1987), J. Virol. 160:75-80.
Tikchonenko, T., et al., (1988) "Transfer of condensed viral DNA into eukaryotic cells using proteoliposomes," Gene 63:321-330.
Gould-Fogerite, S. et al., "Chimerasome-mediated gene transfer in vitro and in vivo," (1989) Gene 84:429-438.
Kaneda et al., "Introduction and Expression of the Human Insulin Gene in Adult Rat Liver," J. Biol. Chem. (1989) 264(21):1216-1219.
Neugebauer, J. "Detergents: An Overview," Meth.Enzymol.,(1990) 182:239-253.
Lapidot et al., "Fusion-Mediated Microinjection of Liposome-Enclosed DNA into Cultured Cells with the Aid of Influenza Virus Glycoproteins," Experimental Cell Research (1990) 189:241-246.
Konopka, K. et al., "Enhancement of human immunodeficiency virus type 1 infection by cationic liposomes: the role of CD4, serum and liposome-cell interactions," J. Gen. Virol. (1991) 72:2685-2696.
Curiel, D.T. et al. "Adenovirus enhancement of transferrin-polylysine-mediated gene delivery," (1991) Proc. Natl. Acad. Sci. USA 88:8850-8854.
Liljistrom, P. and Garoff, H. "A New Generation of Animal Cell Expression Vectors Based on the Semliki Forest Virus Replicon," (1991) Biotech. 9:1356-1361.
Phalen et al., "Cholesterol is Required for Infection by Semiki Forest Virus," J. Cell Biology (1991) 112(4):615-623.
Murata et al., "Modification of the N-Terminus of Membrane Fusion-Active Peptides Blocks the Fusion Activity," Biochem. and Biophys. Res. Communications (1991) 179(2):1050-1055.
Cotten et al., (1992) "High-efficiency receptor-mediated delivery of small and large 48 kilobase gene constructs using the endosome-disruption activity of defective or chemically inactivated adenovirus particles," Proc. Natl. Acad. Sci. USA 89:6094-6098.
Curiel, D.T. et al., (1992) "High-Efficiency Gene Transfer Mediated by Adenovirus Coupled to DNA-Polylys

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Peptide-enhanced cationic lipid transfections does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Peptide-enhanced cationic lipid transfections, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Peptide-enhanced cationic lipid transfections will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-12103

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.