Pediatric prepatory and induction anesthesia device

Surgery – Respiratory method or device – Means for mixing treating agent with respiratory gas

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S203280, C128S204280, C128S205140

Reexamination Certificate

active

06463928

ABSTRACT:

BACKGROUND OF THE INVENTION
Children are often intimidated and frightened when placed in a medical setting as a patient. They are sick and do not feel well from the very start. Then, they are brought to a strange place with other sick and nervous children and confronted with an unfamiliar authority figure (a doctor). As if that were not enough, the doctor may not have time, due to the nature of emergency medical treatment, to gently allay the fears of the children. With all of these factors, it is no wonder that children become nervous and scared; the apprehension is quite natural. Unfortunately, this apprehension can interfere with the medical treatment that these young patients need.
One particular problem faced by anesthetists daily is difficulty in the administration of anesthetic gas to children. Children often resist the use of conventional masks used to supply anesthetic gas to adults. They struggle to prevent doctors from covering their face with the mask, and they tense-up when the masks are in place, breathing in short, shallow breaths instead of deeply breathing the gas. This reduces the effectiveness of the anesthetic gas and makes the entire medical procedure more difficult.
The instant invention, referred to as a Pediatric Preparatory and Induction Anesthesia Device (“PPIAD”), was developed to reduce these problems inherent in using gas to induce anesthesia in children during medical procedures. It presents the mask as a non-threatening toy, incorporating familiar play-things in order to put the child at ease. This helps the doctors to be able to apply the mask with much less struggle.
By presenting itself as a toy, the PPIAD can also assist in the preparation of young children for the application of anesthetic gas in the operating room. The device can be given to the children while they are waiting for the medical procedure (without the anesthesia circuit being attached), allowing them to play with the“toy.” This prepatory process allows the children to become familiar with the device, so that when it is used in the operating room (now attached to the anesthesia circuit), the children are not frightened. This prepatory work with the device in the waiting room also allows the children to learn how to use the device properly, since the desired type of breathing is required for the device's toy-like features to operate. Thus, the PPIAD simultaneously teaches the child how to use the device properly (aiding in the application of the anesthetic gas) while calming the child's fears regarding both the anesthesia and the medical procedure by eliminating some of the uncertainty and unfamiliarity before the child even enters the operating room.
The PPIAD also encourages the child to breathe deeply which greatly increases the effectiveness of the anesthetic gas. This is accomplished by incorporating a balloon, a whistle, or similar items into the device. In order for the child to play with the familiar, toy-like objects, the child must deeply inhale the gas. In this way, the PPIAD uses a game-like setting not only to make application of the mask much less frightening to children but also to actually encourage children to actively participate in such a way that they make the anesthetic gas function more effectively. The result is a much easier and more pleasant experience for all involved (the children are less frightened and receive more effective care, the parents do not have to see their children in such an apprehensive state, and the doctors do not have to struggle with their young patients and try to convince them to breathe properly) and better anesthetic gas delivery to children.
There are other devices which have been developed for delivering gases to children in a medical setting. Many pediatric devices try to disguise themselves as toys. One example is seen in U.S. Pat. No. 5,690,096. It uses a teddy bear-like device to blow oxygen across a child's face. While this device does use toy-like equipment to administer oxygen, such a blow-by device is not useful for administering anesthesia because it does not trap the gas. Releasing anesthetic gas into the atmosphere in a medical setting would be dangerous because the gas could affect the doctors and others tending to the child.
Another device is shown in U.S. Pat. No. 5,697,363. It is an anesthesia administering device designed to look like a helmet for a pilot. However, it administers gas through a nose-piece and does not cover the child's mouth. This means that a child can easily refuse to take in the gas by breathing through the mouth. In addition, it does not encourage the child to deeply inhale; it simply applies the gas while the child breathes in the standard manner. Thus, while the pediatric field often uses toy-like devices to put children at ease, there is no current device which facilitates the administration of anesthetic gas to children as efficiently as does the Pediatric Prepatory and Induction Anesthesia Device.
SUMMARY OF THE INVENTION
Generally, the present invention relates to a device for administering gas to a patient. While this invention is particularly well-suited for use as an anesthetic gas delivery system when treating children, it is in no sense limited to the pediatric field or to delivering anesthetic gas. The present invention has as an objective to administer anesthetic gas to patients. It seeks to do so in a non-threatening way, using familiar toy-like items to sooth the fears of the patient, particularly when the patient is a child. Another object of this invention is to encourage the patient to deeply inhale the gas. This is accomplished by incorporating toy-like items into the device which require moving gases to operate. Yet another objective is for the invention to capture the exhaled gas and to prevent the gas from entering the general atmosphere where it could affect others besides the patient. And still another objective is to prepare the patient for the application of the gas by teaching the patient how to properly breathe through the device (using various toy-like devices to signal proper breathing) so as to facilitate the induction of anesthesia. In accomplishing these objectives, the Pediatric Prepatory Induction Anesthesia Device helps doctors administer anesthetic gas more effectively.
Generally in the PPIAD, the gas flows from the anesthesia circuit into the device through a one-way valve. This allows the gas to enter the device while preventing gases exhaled from the patient from interfering with the entry gas flow. The gas then enters the main body of the PPIAD. This is a tube which leads to the breathing mask with a T-connection to another tube which functions as the exhaust outlet. Inside the main body tube is a whistle device which makes noise when the patient inhales or exhales deeply. This toy-like feature of the device encourages the patient to breathe the gas deeply. The gas passes through the main body tube (when the patient inhales) to the patient through a mask attachment which is wide enough to cover the patient's mouth and nose. Thus, when the patient inhales, the gas enters through the one-way valve at one end of the main body tube, passes through the main body tube and past the T-connection (due to the lower pressure vacuum force created when the patient inhales), and enters the patient through the mask attachment. When the patient exhales, the exhaust passes through the mask attachment and into the main body tube. There, it exits through the T- connection into the exhaust tube since the one-way valve at the other end of the main body tube prevents the exhaust from escaping elsewhere. The exhaust tube leads to another one-way valve which allows the exhaust to exit the exhaust tube but does not allow the exhaust to seep back into the exhaust tube. On the other side of the one-way valve in the exhaust tube is a receptacle for capturing the exhaust gases. Typically, this receptacle is an inflatable container similar to a balloon which expands as the patient exhales more deeply. This encourages the patient to breathe the gases in mor

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pediatric prepatory and induction anesthesia device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pediatric prepatory and induction anesthesia device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pediatric prepatory and induction anesthesia device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2985059

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.