Pedal mechanism

Machine element or mechanism – Control lever and linkage systems – Foot operated

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C074S513000, C074S560000

Reexamination Certificate

active

06722225

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The invention relates to a pedal mechanism, in particular for a vehicle, having a pedal lever which is mounted pivotably about an axis, can be deflected by foot force and can be pivoted back into a basic position by a restoring spring element, an actuating element being actuable by the pedal lever.
Pedals of the abovementioned type have long been customary in motor vehicles and are therefore generally known. If the driver of a motor vehicle moves back his foot which is actuating the pedal lever, the pedal lever then has to follow this movement. If the driver takes his foot off the pedal lever completely in order, for example, to actuate the accelerator after a braking procedure, the pedal lever then has to move back relatively rapidly into its inoperative position. This restoring movement is usually made possible by means of a restoring spring element. When the actuating force is suddenly taken away by the foot letting go or sliding off from the pedal lever, the spring force of the restoring spring element causes the pedal lever to accelerate relatively powerfully (what could be termed allowing it “to snap”). If this movement is only stopped by the actuating element as soon as it has reached its maximum deflection or has arrived against its stop, it may be that the force applied to the actuating element by the momentum of the pedal lever exceeds the highest permissible force and damage to the actuating element occurs.
Overloading of the actuating element can be counteracted by a stop or a stopper which limits the movement of the pedal arm being provided on the pedal mechanism. However, it has proven disadvantageous here that the stop has to be matched exactly to the associated actuating element in order to achieve the desired effect. This requires complicated setting and adjusting activities, which are associated in turn with increased costs. At the same time, the conversion to different vehicle or motorization variants is also difficult. Furthermore, the maximum possible deflection, which is limited by the actuating element, is reduced by the stop, since the theoretically possible maximum deflection has to be reduced by a safety margin which ensures permanently reliable
SUMMARY OF THE INVENTION
The invention is based on the object of providing a pedal mechanism of the described type, in which damage to the actuating element can largely be ruled out and at the same time a stop or a stopping element for limiting the restoring movement of the actuating element can be dispensed with.
According to the invention this problem is solved by the pedal lever being connected to the actuating element by a spring element which is provided in order to limit the force transmitted to the actuating element by the pedal lever during the restoring movement of the pedal lever by decoupling the pedal lever from the actuating element. By this means, when the pedal lever is actuated, the actuating element is actuated as in the case of a conventional pedal lever and the actuating force is transmitted to the actuating element. When the actuating force is suddenly taken away, the pedal lever swings back under the action of the restoring spring force. If, in this case, the highest permissible force for the actuating element is exceeded, the spring element is tensioned. The maximum force acting on the actuating element in the release direction is therefore determined by the configuration of the spring element. Damage to the actuating element, which may be a hydraulic cylinder, for example, is therefore ruled out. A stop can either be omitted completely or serves merely to limit the movement in the restoring direction if the spring element is tensioned and the distance between the pedal lever and the actuating element is therefore enlarged.
A particularly advantageous embodiment of the invention is provided if a component is arranged between the actuating element and the spring element, which component is designed such that in the actuating direction, it can move together with the pedal lever, and, in the restoring direction, it can move relative to the pedal lever against the spring force of the spring element. This makes it possible, on the one hand, to decouple the actuating element during the restoring movement from the movement of the pedal lever and, on the other hand, to relieve the load on the spring element in the actuating direction. A defined path of movement in the component is preferably established. Lateral deviation of the actuating element is thus prevented. The actuating element therefore reliably returns into its inoperative position.
It is advantageous here if the component bears against the pedal lever when the latter is actuated. As a result, the actuating force is transmitted to the actuating element from the pedal lever by means of the component with the spring element being excluded. By this means, the spring element is not subjected to load when the pedal is actuated and is therefore subject to considerably less wear. Possible compliance of the pedal mechanism in the actuating direction, caused by the spring element being loaded in a direction opposed to the direction of action, can therefore be avoided.
A particularly simple embodiment of the invention in terms of structure is one in which the component and the pedal lever are arranged pivotably about a common axis. This enables very compact constructions of the pedal mechanism to be realized. At the same time, the path of movement of the arrangement, in particular of the actuating element, is unchanged as compared to a conventional pedal mechanism. Only very slight changes to existing pedal mechanisms are therefore required, and so this embodiment is also suitable for retrofitting purposes.
The present invention is suitable in principle for all intended uses. The pedal mechanism according to the invention is particularly suitable for use in a motor vehicle if the pedal lever is a brake pedal lever and the actuating element is a braking device. While accelerators are increasingly provided with electric actuating elements whose actuating forces can be configured to be considerably lower, brake pedal levers in passenger vehicles and commercial vehicles are generally also used for the (hydro)mechanical transmission of -the actuating force to a braking device or for the (hydro)mechanical activation of a brake servo. The restoring force of the restoring spring element then depends primarily on the configuration of the braking device and brake servo. These are generally produced in large piece numbers, with the result that individual configurations for the intended purpose, in particular with an individually reinforced stop for the pedal mechanism, are generally not possible.
A particularly simple embodiment of the invention is provided if the spring element is a tension spring. This can easily be integrated into the connection between the pedal lever and the actuating element and at the same time can also be designed to transmit compressive forces.
Another embodiment is provided if the spring element is a compression spring. In the event of the spring element failing, for example should the spring element break, such a spring element makes possible a restoring movement of the actuating element. The actuating element is thus decoupled from excessively high restoring forces, on the one hand, but at the same time has a stop which guides the actuating element into the inoperative position when the compression spring is pressed to the maximum. This may, for example, be effective if the actuating element is jammed in an operating position and no longer returns into the inoperative position.
A further advantageous embodiment is provided with a pedal mechanism in which the spring element is a leg spring. This enables a pedal mechanism to be formed which is space-saving and reliable at the same time. To this end, it is possible for the leg spring to be pivotable, for example, about an axis which is shared with the pedal lever and, in a similar manner to a clothes peg, to be supported with one spring cloth

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pedal mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pedal mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pedal mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3223796

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.