PCR primers and a method for deciding a base sequence...

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing compound containing saccharide radical

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06773901

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a primer for PCR and also to a method for deciding a base sequence thereof. More particularly, the invention relates to a PCR primer suitable for the adenylation in the course of PCR using a termostable DNA polymerase having terminal transferase activity and also to a method for deciding the sequence of such a PCR primer.
For the detection of DNA or RNA, it is usual to detect after amplification of a sequence of DNA or RNA obtained from a specimen. For this purpose, PCR amplification is usually performed. In order to detect a PCR-amplified DNA fragment, the DNA fragment is subjected to radioisotopic labeling or is labeled with chemical emission or fluorescence, followed by detection of the labeled DNA fragment after separation of a sample such as by gel electrophoresis. Recently, terminal fluorescence labeling by a synthetic DNA and fluorescence labeling by intercalator capable of intercalation with DNA fragments is enabled and has now been in frequent use. When using an intercalating fluorphore, a DNA fragment subjected to electrophoresis with an agarose gel is labeled with an intercalator, such as ethidium bromide, acridine orange or the like, and detected.
For the measurement of a more accurate fragment length, a terminal fluorescence-labeled DNA fragment is subjected to electrophoresis with a polyacyrlamide gel and detected. For a process requiring the measurement of an accurate fragment length, mention is made of RT-PCR (Reverse Transcriptase-PCR, J. Stenman et al.; “Accurate determination of relative messenger RNA levels by RT-PCR” Nature Biotechnology, 1999, 17, 720-722), FDD (Fluorescent Differential Display, T. Ito et al.; “Fluorescent differential display: arbitrarily primed RT-PCR finger printing on an automated DNA sequencer” FEBS Letters, 1994, 351, 231-236), ATAC-PCR (K. Kato; “Adaptor-tagged competitive-PCR: a novel method for measuring relative gene expression” Nucleic Acids Research, 1997, 25, 4694-4696), SSCP (M. Orita et al.; “Detection of polymorphisms of human DNA by gel electrophoresis as single-Strand conformation polymorphisms” Proc. Natl. Acad. Sci. USA, 1989, 86, 2766-2770) and the like. In these methods, an amplified product is analyzed with a fluorescent-type DNA sequencer after PCR.
SUMMARY OF THE INVENTION
The currently proposed amplification and detection of a DNA fragment based on PCR and electrophoresis has been introduced hereinabove, with many problems undesirably involved in practical applications. More particularly, adenylation to a DNA fragment by the DNA polymerase takes place in the course of PCR, and thus, two peaks are detected based on an adenylated fragment and a non-adenylated fragment, respectively. The probability of the occurrence of the adenylation varies depending on the type of sample DNA and the PCR conditions. This makes it difficult to obtain a peak area of a target DNA fragment due to the splitting of peak.
In SSCP analyses for diagnostic purposes, a peak area is determined for quantitative analysis, enabling one to detect LOH (Loss of Heterozygosity) that will not be judged by a conventional method (K. Sugano et al.; “Sensitive Detection of Loss of Heterozygosity in the TP53 Gene in Pancreatic Adenocarcinoma by Fluorescence-Based Single-Strand Conformation Polymorphism Analysis Using Blunt-End DNA Fragments” Genes, Chomosomes and Cancer, 1996, 15, 157-164, Sensitive Detection of Loss of Heterozygosity in the TP53 Gene in Pancreatic Adenocarcinoma by Fluorescence-Based Singled Strand Conformation Polymorphism Analysis Using Blunt-End DNA Fragments). However, for highly accurate diagnosis, it is necessary to suppress a rate of a peak area of non-adenylated products to peak area of adenylated products to a level within 10%.
To prevent the peak splitting, two procedures are considered including removal of added adenine or positive adenylation caused to occur to 100%. With the method of removal of the added adenine, exnzymatic treatment has to be performed for the removal after PCR (F. Ginot et al.; “Correction of some genotyping errors in automated fluorescent microsatellite analysis by enzymatic removal of one base overhangs” Nucleic Acids Research, 1996, 24, 540-541). On the other hand, in order to cause the adenylation to positively occur, it is necessary to control a concentration of Mg
2+
ions in a reaction solution and to change reaction conditions. Nevertheless, a difficulty is now involved in stably obtaining an adenylated PCR product. Moreover, although there is a report stating that the efficiency of adenylation changes depending on the sequence in the vicinity of 5′ terminus of a template DNA fragment (V. L. Magnuson et al.; “Substrate Nucleotide-Determined Non-Templated Addition of Adenine by Taq DNA Polymerase: Implications for PCR-Based Genotyping and Cloning” Biotechniques, 1996, 21, 700-709), the sequence is not general, with no decision method of the sequence being proposed.
The method of changing the efficiency of adenylation depending on the sequence at 5′ terminus of a template DNA is called reverse primer tailing (M. J. Brownstein et al.; “Modulation of Non-Templated Nucleotide Addition by Taq DNA Polymerase: Primer Modifications that Facilitate Genotyping” Biotechniques, 1996, 20, 1004-1010).
An object of the invention is to design, in reverse primer tailing, a sequence that causes adenylation to generally occur in a high efficiency against any type of PCR primer capable of amplifying a target DNA fragment, thereby providing a primer sequence that can amplify a DNA fragment capable of being simply analyzed by electrophoresis.
To achieve the above object, a PCR primer having an anchor sequence wherein a sequence is designed to cause adenylation to occur in a high efficiency at 5′ terminus of a reverse primer is used according to the invention. The term “anchor sequence” used herein means a sequence which is positioned at the 5′ terminus of a primer sequence that is complementary with a target gene and which is not complementary with a target DNA sequence. The anchor sequence does not hybridize with a target sequence in the first cycle of PCR, but hybridizes only when complementary strand synthesis proceeds at an opposite strand. Accordingly, the anchor sequence hybridizes in the second and subsequent cycles of the PCR, and the resulting amplified fragment becomes one that has a target sequence and an anchor sequence. The anchor sequence can be designed irrespective of a target DNA sequence, so that it is possible to select a sequence capable of causing adenylation to occur in a high efficiency. It is known that the adenylation of PCR is such that the efficiency of adenylation differs depending on the type of base species at the 5′ terminus, and the efficiency of the adenylation is decided by approximately 5 bases at the 5′ terminus.
In the practice of the invention, four types of primers having anchor sequences wherein only one base at the 5′-terminus among the anchor sequences each made of two to five bases is changed are provided to perform PCR. The results of the PCR are such that the efficiencies of adenylation of the four types of anchor sequences are measured, followed by screening an anchor sequence that is more likely to undergo adenylation. Next, a sequence, in which the adenylation is most likely to occur at the first base of the anchor sequence from the 5′ terminus, is decided, followed by synthesis of four types of primers wherein the second base from the 5′ terminus of the anchor sequence is changed. Like the case of the first base, PCR is performed and a base species with which adenylation is likely to occur at the sequence of the second base from the 5′ terminus is decided. The above procedure is repeated to decide an anchor sequence made of 2 to 5 bases with which adenylation is liable to occur.
PCR is performed using a primer having such an anchor sequence which has been decided by the above procedure and with which adenylation is likely to occur. As a result, an amplifi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

PCR primers and a method for deciding a base sequence... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with PCR primers and a method for deciding a base sequence..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and PCR primers and a method for deciding a base sequence... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3357583

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.