Patient support device

Beds – Mattress – Having confined gas

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C005S713000, C005S727000, C005S740000, C005S731000

Reexamination Certificate

active

06357066

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a patient support device, and more particularly, to a patient support device which provides improved full-body comfort to alert patients immobilized for one or more hours while undergoing imaging or interventional procedures.
2. Description of the Related Art
An increasing demand for diagnostic and interventional services such as femoral catheterization and coronary angiography, coupled with an increase in the complexity of the procedures, has resulted in a turbulent environment.
In these procedures a conscious patient is voluntarily immobilized on a temporary patient support, usually a 1-inch thick vinyl-covered foam pad, for one or more hours while undergoing diagnostic scanning or interventional procedures. During these procedures cardiologists and/or radiologists focus on the patient's image/x-ray and the physicians focus on the procedure at hand. In the patient, lying still, anxious and alert, even a slight positional discomfort could, over a short time, develop into pain. The care/assessment and evaluation as well as the treatment of the patient is delegated to the nurse, who currently has limited resources for improving patient comfort.
The present inventor considered that if a baseline of patient comfort/satisfaction could be assured prior to the onset of any diagnostic or interventional procedure, the nurse could readily assess and treat the patient according to their actual physiologic symptoms (e.g., ischemic chest pain) instead of possible positional pain. Although the present inventor has felt a need for improving patient comfort prior to and during such procedures, there is no economical device or method for assuring patient full-body comfort.
The need for such a device or method increases with the increasing prevalence of procedures in which a conscious patient is required to lie immobile for one or more hours. For example, diagnostic and/or imaging procedures are normally performed outside the operating room, in a suite containing the scanning machine (CT, MRI, x-ray, etc.) and is dedicated to scanning procedures. During scanning, the patient is supported and moved about (translated or transferred) on a temporary support. Translation permits the patient to be moved into the scanning field of the scanning apparatus. Due to physical obstructions inherent in the bulky architecture of the scanning apparatus, particularly with MRI and CAT scans, the patient support is designed to be as narrow as possible, usually about 18 inches in width. The support is usually not wide enough to support the arms, and is narrowed in the area of the head.
The development of miniaturized surgical instruments and probes has resulted in an increase in the popularity of non-invasive surgery. Non-invasive surgery is usually performed using the above-mentioned imaging equipment as the eyes of the physician. The patient support is thus designed to be as narrow as possible to provide access not only to the surgical team, but also to the imaging equipment.
For example, carotid stenting is normally performed in the angiography room of the cath lab or x-ray department, and requires a conscious patient to remain immobile in a supine position for two hours or longer. A catheter is inserted into the patient's femoral artery through a small incision in the right or left groin area. The catheter is selectively positioned up the aorta to the neck region where the carotid artery is blocked. Every few moments contrast is injected through the catheter. Using X-ray equipment (fluoroscopy), the patient's blood vessels are continuously digitally imaged and monitored on overhead monitors, providing exact views by which the physician must guide or direct the catheter to reach the problem area.
Next, the physician inserts a second, more slender catheter inside the first one, with the stent over its tiny inflatable balloon stored securely inside crimped firmly to the catheter's end. The patient—already immobile for almost one hour—is then asked to lie perfectly still and to not even swallow for the next few minutes. The stent is positioned, the balloon inflated, and stent stretched open to form a tiny wire cage, supporting the lumen or walls of the vessel. During this procedure the blood flow to the brain is constantly monitored. The angiography X-ray unit is repositioned around the patient, taking digital (moving) images from different angles. To this point, the procedure has taken two hours, during which the patient has remained awake and largely motionless. Any discomfort experienced by the patient during this period grows and intensifies over time.
As another example, percutaneous translumenal coronary angioplasty (PTCA) involves the percutaneous introduction of an inflatable balloon tipped catheter assembly into the femoral artery and its advancement through the arterial system to, e.g., an atherosclerotic coronary lesion. The balloon is then inflated to dilate the constricted vessel followed by stent placement in most cases.
Yet another non-surgical technique, intra-aortic balloon pump (IABP) counterpulsation, provides circulatory assistance to a patient experiencing cardiogenic shock. Using a needle, a guide wire and a dilator sheath assembly, an elongated catheter-mounted balloon pump is inserted percutaneously through an introducer sheath into a femoral artery, and the assembly travels through the abdominal aorta towards the heart and is positioned into the descending thoracic aorta.
For procedures such as those discussed above, catheterization of the femoral artery (and more recently the radial or wrist artery) is performed in a catheterization lab separate from the operating room where the patient is conscious, and not under general anesthesia such as is generally the case in the surgical suite or operating room.
For both scanning and catheterization, the patient support is considered to be only a temporary support. The patient rests on a one inch thick, vinyl covered foam pad. Apparently, a thin foam pad is believed to increase the stability (decrease roll) of the patient during imaging, and is erroneously believed to give adequate support and comfort to the patient.
However, from the perspective of the patient, such a thin and planar foam pad does not sufficiently conform to the contours of the body and thus fails to provide sufficient support. The patient is asked to remain perfectly motionless on this thin and narrow pad for one or two hours, during which he is awake and able to verbalize any concerns. Patients commonly complain of positional discomfort including back, hip, shoulder and neck pain, often requiring administration of narcotics for pain control. This can be associated with additional risk to the patient and may lengthen the post procedure phase of their care (as well as increase the cost to both the patient and hospital). Any undesirable vovement may cause the procedure to lengthen due to poor imaging quality combined with the need to repeat images. This repetition is costly and time consuming, and causes increased risk to patient, staff and physician.
Further, since the narrow support does not provide for patient arm support, the hands of the patient are simply tucked under the hips to secure them by their sides. This awkward positioning of the arms and hands is one of the primary causes for the patient's discomfort and pain. Any minor discomfort, left unaddressed for as little as five or ten minutes, tends to intensify and develop into severe pain. Patient movement in response to the pain can be dangerous to the patient during a procedure as discussed above.
As discussed above, it is often the responsibility of the nurse to monitor and alleviate patient discomfort. This must be done without interfering with the imaging or interventional procedure at hand.
With the foregoing in mind, the present inventor investigated the presently available devices for supporting patients, and has found none which are simple in design, capable of use in conjunction with existing patient

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Patient support device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Patient support device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Patient support device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2827815

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.