Surgery – Respiratory method or device – Face mask covering a breathing passage
Reexamination Certificate
2000-05-17
2002-09-17
Weiss, John G. (Department: 3761)
Surgery
Respiratory method or device
Face mask covering a breathing passage
C128S201220
Reexamination Certificate
active
06450166
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a novel system for delivery of oxygen to a patient, and more particularly relates to a device which can be used to replace conventional oxygen masks and nose cannula oxygen delivery systems.
Mask oxygen therapy has been around for a very long time and has seen virtually no changes. Problems encountered with this style of therapy are well known but unavoidable using the mask as it is supplied today. A number of vendors supply oxygen masks as a commodity item, with the result that there has been little or no improvement in the technology because of the low profit margins accompanying the sale of such masks.
Conventional oxygen masks comprise tent like structures which are strapped over the nose and mouth of a patient, often using an elastic band or bands behind the patient's ears or head. Oxygen is fed from a supply through a tube into the bottom portion ofthe mask at the front of the patient.
Common problems with the mask include:
1. Some patients find it claustrophobic.
2. Many patients cannot tolerate the smell of plastic resin.
3. Patients must take the mask off to speak or eat thereby discontinuing therapy.
4. Some patients are allergic to the elastic (latex allergy).
5. Some patients feel ill when they wear an oxygen mask, (the psychological effect is truly remarkable on the patient and the patient's family alike).
6. Patients often aspirate if they vomit while wearing the mask.
7. The mask cannot be used during facial surgery due to intrusion into the sterile field.
8. The mask cannot be worn if the patient has facial injuries such as burns.
9. Skin irritation is often found from the plastic.
10. The face mask does not effectively fit all sizes and shapes of face. Often the soft plastic masks are delivered in a deformed fashion.
11. The face mask usually necessitates clipping the oxygen delivery tube in front of the patient at the bottom of the mask. This is awkward and inconvenient as it may interfere with a patient's movement.
12. The face mask creates irregular infusion of oxygen by the patient, with exhaled air from the patient being mixed with oxygen in the mask.
Another current approach to oxygen delivery to a patient employs an oxygen delivery tube with tubular open ended nasal prongs or cannulae, at the delivery end of the tube, for insertion into a patient's nasal passages. Disadvantages of nasal cannulas include:
1. The patient may not be a nose breather.
2. Patients often get nose bleeds from the dryness of the nasal cannulas.
3. Patients find the front oxygen cord, necessary with nasal cannulas, difficult to handle as it hangs down directly in front of them and applies downward pressure on their ears, where the cord is again suspended, as in the case of masks.
Of background interest is U.S. Pat. No. 4,593,688 of Payton issued Jun. 10, 1986, which describes and illustrates a tubular system for, example, delivering nebulized oxygen enriched fog or the like to the face and mouth of a croup patient, the tube being suspended, at its delivery end, from a series of straps secured about a patient's head. A portion of the tube is mounted on a pivoting, unshaped frame member so that the tubing is held in front of and below the patient's face, for delivery of the nebulized oxygen enriched fog. The gas delivery to the nose and mouth area of the patient is through orifices in the tube, near the patient's nose and mouth when the tube is in position. This system is intended for children, and would be uncomfortable and restrictive to one's movements, if placed in position on a patient for a long period of time.
Also of background interest is PCT application WO 99/13929 published Mar. 25, 1999 of Combs et al. This reference describes and illustrates an oxygen delivery system for non-medical uses, for instance in oxygen bars or for oxygen enhancing during exercises such as aerobics or weight lifting. The system comprises a re-usable headset and a conduit to direct oxygen from a source to a headset and to a region proximate to the user's nose and mouth. The conduit is supported by a delivery arm which is preset to a predetermined distance from a user's head for proper supply of oxygen to the user's nose and mouth area.
Also relevant is Knoch et al U.S. Pat. No. 5,575,282 issued Nov. 19, 1996, which describes and illustrates a distribution system for oxygen to a patient's nose and mouth. This system includes a helix for mixing and spirally delivering oxygen towards the patient.
It is an object of the present invention to provide a lightweight system for delivery of oxygen to a patient, which avoids many of these problems of conventional masks and nasal cannulae, and which is suited for medical use.
SUMMARY OF THE INVENTION
In accordance with the present invention there is provided a lightweight oxygen delivery system for a patient comprising a curved resilient headband to extend from side to side over a patient's head and to be comfortably seatably engaged thereon. A clip is secured towards one end of the headband. An elongated tubular boom is secured at one end to the clip to extend and hold its position, when in operation from said one end at the clip to another end located at a space in front of, and proximal to the patient's nose and mouth. An oxygen diffuser port is located at the other end of the boom, to deliver oxygen from the boom to the space in the vicinity of the patient's nose and mouth. The clip is constructed so as to hold securely an oxygen delivery tube from an oxygen source in fluid communication with said one end of the boom so as to deliver oxygen from the source to the boom for discharge through the diffuser.
In an alternative embodiment ofthe present invention the boom further comprises a second tube for oxygen delivery, the other of which is designated for oxygen/carbon dioxide monitoring. This second tube is secured at one end to the clip and has at its other end an oxygen/carbon dioxide inlet port when in operation to be located at a space proximal to the patient's nose and mouth. The clip is constructed so as also to hold securely an oxygen/carbon dioxide monitor tube in fluid communication with the oxygen/carbon dioxide tube of the boom, for delivery of oxygen/carbon dioxide from the space in the vicinity of the patient's nose and mouth to an oxygen/carbon dioxide monitor.
The system of the present invention, as will be described in more detail subsequently, avoids many of the problems inherent with conventional medical oxygen delivery systems such as face masks and nasal cannulae.
REFERENCES:
patent: 1974828 (1934-09-01), Markut
patent: 3040741 (1962-06-01), Carolan
patent: 3056402 (1962-10-01), Dickinson
patent: 3092105 (1963-06-01), Gabb
patent: 3234940 (1966-02-01), Morton, Jr.
patent: 3347229 (1967-10-01), Heitman
patent: 3599635 (1971-08-01), Ansite
patent: 3683907 (1972-08-01), Cotabish
patent: 3850168 (1974-11-01), Ferguson
patent: 4593688 (1986-06-01), Payton
patent: 4739757 (1988-04-01), Edwards
patent: 5575282 (1996-11-01), Knoch
patent: 5653228 (1997-08-01), Byrd
patent: 5697363 (1997-12-01), Hart
patent: D449883 (2001-10-01), McDonald et al.
patent: 1128826 (1982-08-01), None
patent: 2251531 (1997-10-01), None
patent: WO 97/38746 (1997-10-01), None
patent: WO 99/13929 (1999-03-01), None
Lavimodiere Maurice
McDonald Lee
Mitchell Teena
Nikolai & Mersereau , P.A.
Southmedic Incorporated
Weiss John G.
LandOfFree
Patient oxygen delivery system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Patient oxygen delivery system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Patient oxygen delivery system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2883947