Surgery – Diagnostic testing – Cardiovascular
Reexamination Certificate
2001-12-20
2004-12-07
Getzow, Scott M. (Department: 3762)
Surgery
Diagnostic testing
Cardiovascular
Reexamination Certificate
active
06829501
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to a patient monitoring systems and methods and, particularly, to patient monitoring systems and methods for non-invasively monitoring cardiac output of a patient.
BACKGROUND OF THE INVENTION
There is an ongoing need for medical equipment and procedures that allow for quick and accurate diagnosis of patient conditions. For example, in the context of myocardial infarctions, patients frequently arrive at emergency rooms of hospitals complaining of chest pain. The chest pain may be a symptom indicating the patient is experiencing a myocardial infarction or, alternatively, the chest pain may be a symptom indicating the patient is experiencing a lesser medical condition such as heartburn or indigestion. Statistics show that quickly identifying whether a patient is having a myocardial infarction and treating such condition may minimize the amount of damage to the heart. Therefore, there is an ongoing need for systems that can be used to quickly identify whether a patient has had a myocardial infarction.
Additionally, in the context of congestive heart failure, patients benefit from the use of intermittent inotrope infusions, such as milrinone. These infusions, while usually beneficial, are also costly and carry attendant risks such as dysrhythmias and infection, from both indwelling infusion catheters and pulmonary artery catheters used to document the necessity of inotropic support. Therefore, there is an ongoing need for systems that can be used to conduct a pre-assessment of patients scheduled for intermittent inotrope infusion to ascertain whether or not such infusions are needed.
Further, in the context of circulatory deficiencies, acutely ill emergency room patients often have circulatory deficiencies that ultimately lead to shock, organ failure, and death. Early diagnosis is often difficult and subjective, and therefore these deficiencies are currently diagnosed in late stages when therapy is ineffective. Diagnosing these circulatory deficiencies in their early stages allows the patient to be treated before the course of these deficiencies becomes irreversible. Therefore, there is an ongoing need for systems that can be used to assist early detection of such circulatory deficiencies.
It has been found that cardiac output monitoring is useful for diagnosing medical conditions such as those described above. Impedance cardiography techniques for non-invasive monitoring cardiac output are known in the art. However, existing devices that are capable of monitoring cardiac output are cumbersome to utilize. Therefore, improved patient monitoring systems and methods that are capable of monitoring cardiac output would be highly beneficial.
BRIEF SUMMARY OF THE INVENTION
According to one preferred aspect, an embodiment of a patient monitoring system comprises a non-invasive cardiac output sensor, a multi-lead electrocardiogram (ECG) sensor, and a patient monitor console. The non-invasive cardiac output sensor being capable of acquiring a signal from a patient indicative of blood flow through a heart of the patient. The multi-lead ECG sensor comprises a plurality of ECG electrodes capable of acquiring a plurality of ECG signals from the patient. The patient monitor console includes an analysis module and a display. The analysis module is coupled to the non-invasive cardiac output sensor and to the multi-lead ECG sensor, and processes the signal from the patient indicative of blood flow to produce a value pertaining to cardiac output. The display is coupled to the analysis module, and displays the value pertaining to cardiac output and an ECG waveform generated based on the ECG signals.
According to another preferred aspect, an embodiment of a patient monitoring system comprises a non-invasive cardiac output sensor, a communication interface, and a patient monitor console. The non-invasive cardiac output sensor is capable of acquiring a signal from a patient indicative of blood flow through a heart of the patient. The communication interface is capable of establishing a communication link between the patient monitoring system and a local area network of a medical facility in which the patient monitoring system is located. The patient monitor console includes an analysis module and a display. The analysis module is coupled to the non-invasive cardiac output sensor, and processes the signal from the patient indicative of blood flow to produce a value pertaining to cardiac output. The display is coupled to the analysis module, and displays the value pertaining to cardiac output. The communication interface is capable of transmitting the value pertaining to cardiac output over the local area network.
Other features and advantages of the invention will become apparent to those skilled in the art upon review of the following detailed description, claims, and drawings.
REFERENCES:
patent: 5309917 (1994-05-01), Wang et al.
patent: 5319363 (1994-06-01), Welch et al.
patent: 5456261 (1995-10-01), Luczyk
patent: 5956013 (1999-09-01), Raj et al.
patent: 6221012 (2001-04-01), Maschke et al.
Solar® 7000/8000 Patient Monitor Operator's Manual, Software version 6, 2000711-006, Revision A, Jan. 14, 2000, 305 pages, GE Marquette Medical Systems, Inc., Milwaukee, Wisconsin.
GE Medical Systems, Press Room, News Release dated Mar. 29, 2000 “CardioDynamics and GE Marquette Medical Systems Announce Largest Multi-System BioZ. Order to Nationally-Recognized Cardiovascular Center”, http://www.gemedicalsystems.com/cgi-bin/print/print.cgi.
GE Medical Systems, Press Room, News Release dated Jul. 11, 2000 “GE Marquette Medical Systems and CardioDynamics Announce Joint Technology Development Agreement”, http://www.gemedicalsystems.com/cgi-bin/print/print.cgi.
GE Medical Systems, Monitoring Systems, Non-invasive Hemodynamic Monitoring http://www.gemedicalsystems.com/monitor/products/modular/icg_m.
“GE Medical Systems Information Technologies and CardioDynamics Preview BioZ® ICG Module for Solar® Patient Monitoring Family at American Heart Association Meeting”, Nov. 13, 2000 http://www.cardiodynamics.com/ir/press_releases/cd_pr111300.html.
GE Medical Systems, Press Room, News Release dated Jun. 20, 2001 “GE Introduces the World's First Non-Invasive Hemodynamic Patient Monitoring System with CardioDynamics' ICG Technology”, http://www.gemedicalsystems.com/cgi-bin/print/print.cgi.
Solar® 7000/8000 Patient Monitor Operator's Manual, Software Version 7, 2000711-032 Revision A Chapters 1, 10, 14 and 19.
Dash® 3000/4000 Patient Monitor Operator's Manual, Software Version 2, 2000966-069 Revision A Chapters 1, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18.
BioZ.com™ Operator/Service Manual, Mar. 2000.
“The View Within: The Emerging Technology of Thoracic Electric Bioimpedance”; Lasater M.; vol. 21, No. 3, pp. 97-101; Nov. 1998; Critical Care Nursing Quarterly.
“Advances in Noninvasive Hemodynamic Monitoring”; Clontz RL; Issue 167, pp. 47-50; Oct. 1997; Medical Electronics.
“Impedance Cardiography: Noninvasive Measurement of Cardiac Stroke Volume and Thoracic Fluid Content”; Strobeck JE; pp. 56-59; Mar./Apr. 2000; Congestive Heart Failure.
“Noninvasive Cardiac Output Measurement”; Bernstein DP; Chapter 18, pp. 159-185; In: “Textbook of Critical Care, Second Edition”; Philadelphia, WB Saunders Co. (1989).
“Electrophysiologic Principles and Theory of Stroke Volume Determination by Thoracic Electrical Bioimpedance”; Osypka, MJ, et al.; vol. 10, No. 3, pp. 385-399; Aug. 1999; AACN Clinical Issues.
Nielsen Eric
Van Ryzin Patrick A.
Andrus Sceales Starke & Sawall LLP
GE Medical Systems Information Technologies Inc.
Getzow Scott M.
LandOfFree
Patient monitor and method with non-invasive cardiac output... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Patient monitor and method with non-invasive cardiac output..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Patient monitor and method with non-invasive cardiac output... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3285475