Patient lead wire detangler

Electricity: conductors and insulators – Conduits – cables or conductors – Accessories

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C174S136000, C361S826000

Reexamination Certificate

active

06639153

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a device and method for detangling and preventing the tangling of a plurality of elongated flexible members. In particular, the present invention relates to a device and method for detangling and preventing the tangling of a plurality of leads for operatively connecting electrodes to an electrotherapy and/or monitoring device.
BACKGROUND OF THE INVENTION
The number of electrically operated medical devices has exploded in recent times. Along these lines, more and more monitoring and treatment devices are developed constantly. Most electrically operated medical devices include leads, or wire, that interconnect elements of the devices. For example, a base unit is often interconnected with a portion of the device that interacts with a patient. Along these lines, monitoring and/or treatment electrodes that are attached to a patient can be interconnected with a base unit with one or more leads. Tangled or intertwining of the leads may prevent or hinder a caregiver in administering to a patient. Of course, there are many devices other than medical devices which include leads, and tangling of the leads can hinder or prevent operation of any such device.
One example of devices that utilizes leads to interconnect its elements includes electrotherapy devices used to provide electric shocks to treat patients for a variety of heart arrhythmias. For example, external defibrillators typically provide relatively high-energy shocks to a patient (as compared to implantable defibrillators), usually through electrodes attached to the patient's torso. External defibrillators are used to convert ventricular fibrillation (“VF”) or shockable ventricular tachycardia (“VT”) to a normal sinus rhythm. Similarly, external cardioverters can be used to provide paced shocks to convert atrial fibrillation (“AF”) to a more normal heart rhythm.
Sudden cardiac arrest (“SCA”) is the leading cause of unanticipated death in the United States. On average about 600 people per day die of SCA. This translates to nearly one death every two minutes. It is likely that these statistics would, at a minimum, hold true for third world countries. Precise international statistics are not available but the U.S. rate for coronary heart disease deaths, of which sudden deaths constitute nearly half, is representative of international rates (rank 16
th
and 13
th
among 36 nations reported by the World Health Organization (WHO), for men and women, respectively).
Most sudden cardiac death is caused by VF, in which the heart's muscle fibers contract without coordination, thereby interrupting normal blood flow to the body. The only effective treatment for VF is electrical defibrillation, which applies an electrical shock to the patient's heart. The electrical shock clears the heart of the abnormal electrical activity (in a process called “defibrillation”) by depolarizing a critical mass of myocardial cells to allow spontaneous organized myocardial depolarization to resume.
To be effective, the defibrillation shock must be delivered to the patient within minutes of the onset of VF. Studies have shown that defibrillation shocks delivered within one minute after the onset of VF achieve up to a 100% survival rate. However, the survival rate falls to approximately 30% after only 6 minutes. Beyond 12 minutes, the survival rate approaches zero. Importantly, the more time that passes, the longer the brain is deprived of oxygen and the more likely that brain damage will result. As improved access to defibrillators increases, survival rates from SCA also increase.
The electrical pulse must be delivered within a short time after onset of VF in order for the patient to have any reasonable chance of survival. To be effective, the defibrillation shock must be delivered to the patient within minutes of the onset of VF. Studies have shown that defibrillation shocks delivered within one minute after the onset of VF achieve up to a 100% survival rate. However, the survival rate falls to approximately 30% after only 6 minutes. Beyond 12 minutes, the survival rate approaches zero. Importantly, the more time that passes, the longer the brain is deprived of oxygen and the more likely that brain damage will result. Electrical fibrillation may also be used to treat shockable ventricular tachycardia (“VT”). Accordingly, defibrillation is the appropriate therapy for any shockable rhythm, that is, VF or shockable VT.
External defibrillators send electrical pulses to a patient's heart through electrodes applied to the patient's torso. External defibrillators are typically located and used in hospital emergency rooms, operating rooms, and emergency medical vehicles. Of the wide variety of external defibrillators currently available, automatic and semi-automatic external defibrillators, collectively referred to as “AEDs”, are becoming increasingly popular because relatively inexperienced personnel can use them. U.S. Pat. No. 5,607,454 to Cameron et al., entitled Electrotherapy Method and Apparatus, and PCT publication number WO 94/27674, entitled Defibrillator With Self-Test Features, the specifications of which are hereby incorporated by reference, describe AEDs.
AEDs provide a number of advantages, including the availability of external defibrillation at locations where external defibrillation is not regularly expected, and is likely to be performed quite infrequently, such as in residences, public buildings, businesses, personal vehicles, public transportation vehicles, among other locations.
Monitoring devices are utilized in conjunction with electrotherapy devices to monitor a patient's heart rate. If a patient does not have a shockable rhythm, then a defibrillating shock should not be administered. Just as it is important to quickly administer a defibrillating shock if a patient has a shockable rhythm, it is important to quickly verify that the patient has a shockable rhythm.
SUMMARY OF THE INVENTION
A problem with deploying a device such as a defibrillator/monitor in any location is the tangling of leads extending, for example, between the defibrillator/monitor and electrodes. Tangling of the leads can occur when the device is prepared for storage, as the device is being taken from storage for use, and when preparing the device for restorage. Tangling of the leads can hinder or prevent proper use of the device.
The present invention addresses the above-described problem by providing a device for detangling or preventing the tangling of a plurality of elongated flexible members. The device includes at least one slidable collar that includes at least one bore for receiving the flexible members. The slidable collar is slidable along the flexible members.
Additionally, the present invention provides a device for preventing a plurality of flexible members from becoming tangled. The device includes a flexible member retainer for retaining the flexible members. The flexible member retainer includes a plurality of flexible member retaining grooves. Each groove retains one flexible member. Each groove includes an opening having a maximum width smaller than a maximum width of the flexible member the groove is to retain.
In addition, the present invention provides a method for detangling a plurality of flexible members. According to the method, at least one slidable collar member that includes a bore for each flexible member is moved along the flexible members.
Furthermore, the present invention provides a method for preventing a plurality of flexible members from becoming tangled. According to the method, the flexible members are retained with a flexible member retainer. The flexible member retainer includes a plurality of flexible member retaining grooves. Each groove retains one flexible member and includes an opening having a maximum width smaller than a maximum width of the flexible member the groove is to retain.
Still other objects and advantages of the present invention will become readily apparent by those skilled in the art from a review of the following detailed descriptio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Patient lead wire detangler does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Patient lead wire detangler, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Patient lead wire detangler will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3120168

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.