Surgery – Instruments – Orthopedic instrumentation
Reexamination Certificate
2002-01-29
2003-07-08
Philogene, Pedro (Department: 3732)
Surgery
Instruments
Orthopedic instrumentation
C606S088000, C606S089000, C606S099000, C623S020140, C623S020150, C623S020180, C623S020200
Reexamination Certificate
active
06589248
ABSTRACT:
1. BACKGROUND
For a variety of reasons, whether from the natural aging process or from an injury, the knee may become damaged to such an extent that it needs to be completely repaired—usually through a surgical procedure called a total knee arthroplasty. In an arthroplasty, the damaged portions of the knee are removed and replaced with prosthetic components that are the size and shape of the original undamaged portions of the knee. It is important that the replacement prosthetics be aligned properly to prevent unnecessary wear and tear on the new components and to prevent complications from occurring due to the misalignment. To assist with the proper alignment of the prosthetic replacements, trial components are first installed during surgery. The trial components are the size and shape of the final components but are only used to test the alignment and fit of the knee before installing the permanent components.
There are three primary bones that comprise a knee joint in a human that are the subject of an arthroplasty—the lower portion of the femur (the thigh bone), the upper portion of the tibia (the shin) and the patella (the knee cap). The knee cap is connected both to the femur and to the tibia by a series of ligaments and tendons. The femur has a groove or sulcus for the patella to glide in as the knee is flexed. The tendons and ligaments not only help hold the patella in place but also assist in maintaining its proper position in the groove.
As part of the arthroplasty, the surgeon removes the lower portion of the femur, the upper portion of the tibia, and the posterior portion of the patella. Once the areas have been removed sufficiently to clear away any damage, trial components are inserted and the knee joint is tested for proper alignment by flexing and extending the knee. Any misalignment is corrected prior to permanently attaching the final components. The pain, stiffness, swelling, and deformity from walking and weight-bearing on this knee is then eliminated.
To perform the surgery, the knee is opened by an anterior incision and dissection carried down to the joint surfaces. The femur's surface is removed by the use of jigs for sawing the femur at the proper location to remove the damaged area. Similarly, the tibia is then exposed and it's damaged surfaces removed by using jigs for cutting the surfaces correctly. Trial components, usually made of plastic, are inserted temporarily at the removed sections of the femur and tibia and are used to check the alignment and fitting of the knee with its new components.
Once the femur and tibia have been fitted with the trial components, attention is directed to the patella. The procedure for repairing the patella varies depending on the surgeon. Some surgeons do not replace the back surface of the patella and leave it as it is. However, most surgeons replace the back surface of the patella. This is done by first measuring and removing the back 7-10 mm of bone and cartilage from the patella. Traditionally, a hole is the drilled in the center or near the center of this area and a trial patella component applied. However, there are some patella prosthesis designs that either require more than one hole or require a recessed area for acceptance of the final component. Existing trial patella components are usually dome-shaped, about the size of a quarter, and have a central stalk on the back side. This stalk or protrusion on the back holds the trial component in place on the back of the cut patella. Traditionally, the trial patella component is inserted and, with the trial femoral and tibial components in place, the knee is flexed and extended and the fitting and alignment of the entire knee is checked, particularly the tracking of the patella along the groove of the lower femoral replacement component.
Existing trial patellas are essentially immobile once they are placed since they are inserted with the stalk or protrusion into the drilled hole. Therefore, if the surgeon drills the hole for mounting the trial patella prosthesis in the drilled proposed location on the back of the patella, then the patella prosthesis will not track properly and additional surgical procedures are necessary to cause the patella to track properly.
In some cases the patella tries to slip out of the groove slightly or subluxate. In others the patella prosthesis may be so poorly aligned that it may move completely out of the groove or dislocate. Existing methods for correcting this misalignment often include a soft tissue release which involves cutting tendons and/or the musculature that holds the patella. Other methods include transferring the tibial tubercle or rotating the femoral or tibial components. Attempts are usually made at accurately placing the trial patella to prevent the necessity of a tissue release, since a tissue release usually causes more bleeding, scarring and difficult rehabilitation after surgery. Additionally, a misaligned patella may cause excessive wear on the prosthetic components of the knee joint, which may reduce the life of the knee joint and necessitate additional surgery.
After the trials are completed, all necessary releases are performed and the positions and alignment acceptable, the final components are inserted and either cemented or press-fit into position. Final trial is performed and the knee is closed.
Many post-operative complications in total knee arthroplasties have been attributed to poor patellar tracking. Dislocations, subluxations, excessive polyethylene wear and particulate debris are some of these complications. It is felt tracking can be improved with better component positioning and alignment at the initial surgery.
Presently, the placement of the patella component on the sectioned patella surface consists of centering the patella component, making certain it fits the whole surface of the patella without overlap. A hole the size of the stalk on the trial component is drilled in the center of the patella and the prosthetic trial inserted. The patella is then placed into its position on the knee joint and trialed to check the tracking on the other components. If it subluxates or dislocates, then a lateral release, patellar tendon transfer, quadriceps snip, or whatever the surgeon chooses is done to allow good tracking. A lateral release is the most common technique used and perhaps the safest. However, a lateral release may be problematic itself since it is believed to reduce the circulation to the patella and could encourage fractures, aseptic necrosis, and/or loosening of the patella component. Also, post-operative rehabilitation is much more difficult as there is more bleeding and scarring post-operatively.
Existing devices and methods for placement of the prosthesis do not consistently allow for propel placement of the final patella prosthesis. Proper placement of the patella component would eliminate the need for additional surgical procedures and the complications associated with those procedures solely to allow the patella to track properly and provide a better performing prosthetic knee joint.
2. SUMMARY
The present invention is a self-aligning patella trial device which allows the surgeon to accurately locate the proper position for the final patella prosthesis. The present patella trial device further eliminates the need to perform additional surgical procedures to allow proper tracking of the device. The trial device of the present invention comprises two components. One of the components is a baseplate for attaching to the posterior portion of the patella. The baseplate is a flat circular plate having a series of slots, preferably radially oriented, in the plate, which may or may not be used during the trial procedure. One side of the flat plate contains small spikes for temporary attachment to the posterior portion of the patella.
The second component resembles the final prosthetic patella and is dome-shaped with a flat surface for placement on the baseplate. The flat surface of the dome-shaped component may be smaller, larger, or equal in diameter to the baseplate. Magnetic plast
Moore Kent R.
Philogene Pedro
Ramana Anuradha
LandOfFree
Patellar alignment device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Patellar alignment device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Patellar alignment device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3021384