Passive safety shield system for injection devices

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S110000

Reexamination Certificate

active

06776777

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a passive shield system for injection devices, including syringes, which prevents inadvertent or premature actuation of the shield during normal bulk transportation, handling and processing and permits the user, such as a healthcare worker or patient, to select the timing of the actuation of the shield while assuring shielding of the needle or cannula without additional manual manipulation.
BACKGROUND OF THE INVENTION
Injection devices including syringes are well known medical devices for administering medicaments, drugs and vaccines to patients. As used herein, the term “syringe” is intended to cover the various types of injection and medical delivery devices. They are also used for other well known purposes in the medical field. Prefilled syringes, for example, are generally considered as those which are filled with a selected dosage of medicament, drug or vaccine by a pharmaceutical manufacturer for distribution to the end user. They are generally comprised of a tubular barrel, which contains the medicament, drug or vaccine and a stopper is slidably received in the barrel. The distal end of the barrel typically includes a needle cannula affixed thereto or a connector for a hypodermic needle, such as a Luer fitting. The open proximal end of the syringe barrel generally includes an integral radial flange and a stopper is inserted by the pharmaceutical manufacturer following loading of the barrel with a suitable medicament, drug or vaccine. The plunger of a prefilled syringe generally includes a stopper, which is moveable in the syringe barrel, a plunger rod, which extends through the open proximal end of the barrel with a thumb pad is typically integrally formed on the proximal end of the rod. The syringe barrel is typically formed of glass, but may be formed of any suitable material including plastic and metal. The plunger and stopper assembly allows the user to apply manual force to the plunger, driving the stopper through the barrel and causing the medicament, drug or vaccine to be delivered through the needle cannula to the patient during an injection.
The use of any sharp-pointed piercing element entails the risk of an accidental needle stick. To avoid accidental needle sticks, the prior art has proposed various types of safety shields for syringes including prefilled syringes as described above. Such safety shields typically include a tubular shield or needle cover which is located in a retracted position for injection and an extended position following injection enclosing at least the end point of the needle cannula of the syringe and preventing accidental needle sticks. The tubular shield or needle cover of the syringe shield systems proposed by the prior art are typically mounted on a body having a cavity for receipt of a syringe and the syringe is inserted into the body by the pharmaceutical company after filling the syringe with a suitable medicament, drug or vaccine. Alternatively, the shield may be mounted directly on the barrel of the syringe.
There are generally three types of safety shield systems for syringes proposed by the prior art. The first type may be characterized as manual shield systems. That is, the shield or needle cover is manually manipulated by the user to move the needle cover from the retracted position, wherein the needle is exposed for injection or aspiration in the case of reconstitution or vein test, to the extended position, wherein the needle is enclosed. Such manual shield systems typically include some means to prevent the shield from being inadvertently moved to the extended position and prevent the shield from retracting following shielding of the syringe needle cannula, such as detents, interlocking ribs, threads, spiral grooves and the like. The principal disadvantages of manual syringe shield systems are that there is no positive assurance that the user will properly shield the needle cannula following use or that the needle cover is properly locked in the shielded position. In addition, some designs can allow inadvertent activation of the shield.
A second type of shield systems for syringes may be characterized as active shield systems. Active shield systems will typically include an energizer, such as a spring, which biases the shield or needle cover toward the extended position. Generally, the shield is initially retained in the retracted position by ribs, detents or the like and actuated by some action by the user. The principal advantage of active syringe shield systems is that, upon activation by the user, the shield or needle cover will move to enclose the needle cannula and lock the shield. Such active shield systems are generally activated by a button, movement of a component following injection or other release mechanism. That is, the user can generally activate the shield following injection to avoid contact of the shield with the patient's skin prior to disposal. The principal problem with active shield systems for syringes is that again there is generally no positive assurance that the end user will properly shield the needle cannula of the syringe. Further, the shield may be inadvertently or prematurely activated prior to use as discussed further below. The shield may also be inadvertently or prematurely activated particularly during bulk shipping and processing.
The third type of shield systems may be characterized as passive shield systems. Passive shield systems also include an energizer, such as a spring, biasing the shield or needle cover toward the extended position as described above in regard to the active shield systems. However, the shield system is activated automatically generally upon completion of the injection. The primary disadvantages of the passive shield systems proposed by the prior art are that the user cannot select the timing of the actuation of the shield system and the shield or needle cover may be inadvertently or prematurely activated prior to use or completion of the delivery of the fluid in the syringe. That is, the shield can be activated while the needle cannula remains in the patient or the shield may be prematurely activated, particularly during normal manufacturing and assembly procedures and shipping. Shield systems are generally manufactured and assembled by the manufacturer of the shield system. The shield systems are then transported in bulk to a pharmaceutical company and must be handled using automatic feeding equipment, including feed bowls, etc., possibly resulting in inadvertent or premature activation of the shield.
The prior art also includes passive safety shield systems for syringes, wherein the shield system is actuated upon release of the plunger rod resulting in retraction of the syringe into the shield. However, in such shield systems, the syringe is withdrawn into the shield as the plunger rod is released, requiring the user to maintain the plunger against the force of the spring and requiring complete release of the plunger to shield the needle cannula of the syringe. In addition, the shield may contact the patient's skin.
As described below, the passive shield system of this invention reduces the likelihood of premature activation of the shield and permits the end user to select the timing of the activation of the shield. That is, the user can activate or authorize the activation of the shield after removing the needle cannula from the patient, thereby reducing the risk of hitting the patient's skin with the shield or needle cover. Further, the shield or needle cover moves axially relative to the syringe to enclose the needle cannula and lock the shield in the extended position following actuation, requiring only release of the plunger thumb pad.
SUMMARY OF THE INVENTION
As set forth above, the safety shield system of this invention is passive, but avoids the problems associated with the prior art passive shield systems. The shield system of this invention may be utilized with prefilled syringes of the type described above, but may also be used with other types of injection devices. Premature

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Passive safety shield system for injection devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Passive safety shield system for injection devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Passive safety shield system for injection devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3316104

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.