Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
2001-04-19
2003-06-03
Layno, Carl (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
C128S903000, C607S032000
Reexamination Certificate
active
06574511
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to implantable medical devices (IMDs) and instruments. Specifically, the invention relates to an apparatus and method that enables exchange of medically relevant data and information between a number of instruments and IMDs. More specifically, the invention pertains to passive data exchange and collection based on a plurality of instruments, which may interrogate each other and/or IMDs for the purpose of exchanging pertinent data. The system is compatible with and may operate within a network or web-enabled system for transferring the passively collected data.
BACKGROUND OF THE INVENTION
After the implantation of an IMD, such as for example, a cardiac pacemaker, clinician involvement with respect to the IMD has typically only begun. The IMD cannot be implanted and forgotten, but must be monitored for appropriate operation. The IMD may also require occasional adjustment of certain parameters or settings to optimize its functionality for therapy and diagnosis. In addition, IMDs may also need to be replaced in response to or in anticipation of changes in patient condition or other environmental factors, or based on factors internal to the device, battery depletion, for example. Instruments that program the IMDs may also require firmware or software upgrades or modifications.
Further, the implantation of a medical device is an event that must be carefully documented or recorded by various clinicians and commercial entities. For example, per FDA requirements, a clinician must record information about the device such as its serial and model number in order to inform the patient of any health safety alerts, should these occur. Such information is also useful if any firmware or software updates or upgrades involving the device are to be made. These same data are necessary if the physician is to issue reminders to the patient regarding significant dates involving the IMD in order to generally aid in patient compliance. The IMD may also require regular maintenance checks, suggested or prescribed. The renewal of a power supply or the refilling of a reservoir containing a drug administered by the device are examples of routine maintenance that may be required. Similarly, the manufacturer and/or seller of the device will probably wish to match information about the device such as its serial and model number, manufacturing date, its batch or lot, with, for example, the patient receiving the implant and/or the clinical entity administering the device. Maintaining such a database ensures that any important information involving the device may be promptly provided to the FDA, the patient, and the clinician either directly or indirectly.
Further, medical practice dictates that an accurate record of past and contemporaneous programming sessions be documented. Typically, such a report identifies all the medical devices involved in any interactive procedure. Specifically, all data collected by peripheral and major instruments that downlink to the IMD may be reported. Currently, such procedures are reported only when the instrument is in direct contact with the IMD via an RF programming head. And while the data accumulated by the IMD may be uplinked to the instrument, some data requires manual entry during each procedure, for example, the model and serial number of the IMD in/on a piece of documentation. One of the limitations of this procedure is the fact that it is error prone and requires rechecking of the data to verify accuracy. The use of human clinicians and technicians to analyze data and document changes in device therapy based on clinical diagnoses also may result in inefficiencies and errors.
Thus, it may be desirable to limit clinician, technician, or other human involvement in documenting certain information about the IMD and its operation within a patient, once the IMD is implanted. For example, after implantation, the IMD must be registered, specifically by model and serial number among other pieces of required data.
There is also a need to monitor the status of the instrument/programmer on a regular, if not continuous, basis to ensure optimal patient care. In the absence of other alternatives, this imposes a great burden on the patient if a hospital or clinic is the only center where the necessary upgrade, follow up, evaluation and adjustment of the IMDs can be made. Further, even if feasible, the situation involving patients with multiple implants would require the establishment of multiple service areas or clinic centers to support the burgeoning number of multi-implant patients worldwide.
A technology-based health care system that fully integrates the technical and social aspects of patient care and therapy should be able to flawlessly connect the client with care providers irrespective of the separation distance or location of the participants. While clinicians will continue to treat patients in accordance with accepted modern medical practice, developments in communications technology are making it ever more possible to provide medical services in a time and place independent manner.
The frequent use of programmers to communicate with the IMD and provide various remote services, have become an important aspect of patient care as indicated in the disclosures contained in co-pending applications titled “Apparatus and Method for Remote Troubleshooting, Maintenance and Upgrade of Implantable Device Systems,” filed on Oct. 26, 1999, Ser. No. 09/426,741; “Tactile Feedback for Indicating Validity of Communication Link with an Implantable Medical Device,” filed Oct. 29, 1999, Ser. No. 09/430,708 “Apparatus and Method for Automated Invoicing of Medical Device Systems,” filed Oct. 29, 1999, Ser. No. 09/430,208; “Apparatus and Method for Remote Self-Identification of Components in Medical Device Systems,” filed Oct. 29, 1999, Ser. No. 09/429,956; “Apparatus and Method to Automate Remote Software Updates of Medical Device Systems,” filed Oct. 29, 1999, Ser. No. 09/429,960; “Method and Apparatus to Secure Data Transfer From Medical Device Systems” filed Nov. 2, 1999, Ser. No. 09/431,881; “Virtual Remote Monitor, Alert, Diagnostics and Programming For Implantable Medical Device Systems” filed Dec. 17, 1999, Ser. No. 09/466,284; “Integrated Software System For Implantable Medical Device Installation and Management” filed Dec. 24, 1999, Ser. No. 60/173,082 which are all incorporated herein by reference in their entirety.
In related art, Ferek-Petric discloses a system for communication with a medical device in a co-pending application, Ser. No. 09/348,506 that is incorporated herein by reference in its entirety. The disclosure relates to a system that enables remote communications with a medical device, such as a programmer. One of the significant teachings of Ferek Petric's disclosure, in the context of the present invention, includes the implementation of communication systems, associated with IMDs, that are compatible with the Internet. Specifically the disclosure advances the art of remote communications between a medical instrument, such as a programmer, and experts located at a remote location using the Internet. As indicated in the disclosure, the communications scheme is structured to primarily alert remote experts to existing or impending problems with the programming device so that prudent action, such as early maintenance or other remedial steps, may be timely exercised. Further, because of the early warning or advance knowledge of the problem, the remote expert would be well informed to provide remote advice or guidance to service personnel or operators at the programmer.
Accordingly, there is a need for a system in which a programmer and/or IMD could passively exchange and/or collect device, instrument related data as well as pertinent clinical data, in a secure manner, with a plurality of programmers that are in contact with an Information Network. Specifically, telemetry or equivalent wireless systems could be structured to transmit the data to any other instrument. These data could then be transferred to a rem
Layno Carl
Medtronic Inc.
Wolde-Michael Girma
LandOfFree
Passive data collection system from a fleet of medical... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Passive data collection system from a fleet of medical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Passive data collection system from a fleet of medical... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3111562