Parts washing system

Cleaning and liquid contact with solids – Processes – Including regeneration – purification – recovery or separation...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C134S025400, C134S040000, C134S111000, C435S264000, C210S610000

Reexamination Certificate

active

06440226

ABSTRACT:

BACKGROUND OF THE INVENTION
A parts washer including a mechanical, fluid and a biological component, reduces environmental problems of waste disposal. “Parts” include objects fouled with organic and particulate matter such as automotive parts.
Parts washers are employed in the cleaning of parts that are contaminated with organic waste products such as hydrocarbons, oils, greases, road dust and grit. The type of parts washed in a parts washer include automotive parts such as nuts, bolts, valves, pistons, carburetors, transmission parts, and the like. Most conventional parts washers include a basin mounted on the top of a tank. The tank is partially filled with a mineral spirits solvent that is pumped from the tank through a conduit that discharges into the basin where the parts are washed. The mineral spirits solvent drains from the basin back to the tank for reuse. A filter is sometimes interposed in the solvent flowpath to collect organic waste products and particulates washed from the parts.
Although mineral spirits are an effective cleaning solvent, there are many drawbacks to the employment of parts washers that utilize mineral spirits. For example, mineral spirits solvents are presently classified by government regulatory agencies as hazardous materials because of their low flash point and potential health concerns. For example, contact dermatitis is common for operators of parts washers who generally do not wear gloves. Because of this classification, mineral spirits must be used, handled, and disposed of in compliance with extensive government regulations. Further, mineral spirits that are not properly contained can have a negative impact on the immediate work environment, and it is not uncommon for workers to have dermatitis and respiratory problems exacerbated by the unprotected use of mineral spirits. Additionally, many users of mineral spirits find it necessary to dispose of used mineral spirits by having a licensed waste disposal company pick up the used mineral spirits so that the used mineral spirits can be disposed of in compliance with the various governmental guidelines and regulations; such disposal can be expensive.
Filters are generally incorporated into conventional parts washers to separate the organic waste products and particulates from the solvent. A problem is that the filters eventually become saturated with organic waste products and particulates and therefore need to be replaced. The filters are often difficult to access and replace. Furthermore, the filters, after they have absorbed the organic waste products, are often considered hazardous material and are therefore difficult to dispose of according to legal restrictions.
There is, therefore, a need in the industry for a system which provides for parts washing and reduces environmental problems associated with mineral spirits as a cleaning (washing) component.
SUMMARY OF THE INVENTION
A system for parts washing employs a combination of a cleaning fluid and a biological agent as a method to replace the mineral spirits of other parts washers. “Parts” as used herein include objects befouled with organic and/or particulate matter. Parts cleaned according to the invention include automotive parts, equipment parts and machinery parts. Objects are inanimate, non-biological objects such as metal or plastic. The cleaning fluid serves two purpose: 1) cleans parts; and 2) maintains the viability of the biological agent. An apparatus is developed that is suitable for implementation of the method.
The cleaning fluid includes a surfactant that functions to remove organic waste from the parts being washed. The biological component includes microorganisms that digest the organic waste. The cleaning fluid is not toxic to the microorganisms, therefore the microorganisms survive and reproduce within the cleaning fluid environment. The present invention comprises a parts washing system characterized by a cooperative interaction among a mechanical component, a fluid component, and a biological component. The parts washer apparatus (herein also referred to as the “parts washer”) of the parts washing system includes, a holding tank, cleaning fluid retained within the tank, microorganisms living with the cleaning fluid, a wash basin, a fluid delivery system, an in-line filter to which microorganisms are affixed, and an electrical control system for maintaining an environment conducive to maintaining and promulgating the life of the microorganisms.
In an illustrative embodiment, the wash basin of the parts washer is a multi-tiered basin including a sink member defining a bottom panel and a false bottom disposed above the bottom panel. The multi-tiered basin further includes a support grid and filter interposed between the false bottom and the sink member. The false bottom, support grid, and filter are readily removable from the sink member. The holding tank is partially filled with the cleaning fluid, and a pump and conduit assembly direct a flow of the cleaning fluid to the basin. The cleaning fluid discharged into the basin flows through a drain hole in the false bottom, through the filter and support grid, and then through a drain hole defined through the bottom panel of the sink member, finally the cleaning fluid is then returned to the tank for reuse. The pump and conduit assembly functions to aerate the cleaning fluid; and a heater, thermostat, and level control assembly function to maintain the cleaning fluid within a certain temperature range so as to maintain a proper environment for the sustainment of the microorganisms. The microorganisms are preferably introduced into the cleaning fluid in a dormant state. The microorganisms in the dormant state are preferably adhered to the filter prior to use, for example by an adhesive, and released from the filter when the cleaning fluid flows through the filter by dissolution of the adhesive and the force of the flow. For example, a microorganism “sandwich” is made by spraying an adhesive layer on the filter, dusting powdered microorganisms over the adhesive then spraying the microorganism layer with an adhesive layer.
The present invention optionally includes retrofit components to parts washers currently using mineral spirits. A conversion kit consisting of the cleaning fluid, a thermostatic heating element, a filter pack with dormant microorganisms, and special adapter fittings is used to convert a parts washer using a method of cleaning other than that of the present invention, to the biodegrading system of this invention. Adaptations of the kit can be specifically tailored for; tumblers, vibrator cleaners, and other agitation systems including those using fluid jet and sprays that also presently use mineral spirits.
An ultrasonic tank and brushes may work in conjunction with the cleaning fluid to expedite the breaking up of encrusted organic waste and particulates. For example, an electrically driven ultrasonic transducer located in the base of a brush may act alone or in combination with one or more larger (or macro) motions which, include vibration of brush bristles axially or rotationally, and continuous rotation of the brush bristles about one or more axis. Power is derived from either electrical or fluid turbine components.
In summary the present invention provides a new system for washing parts. A biological component is sustained within the parts washer by means of the fluid component, which also has a cleaning function. The parts washing system is “environmentally friendly,” for example, it decreases the production of hazardous waste materials. Organic waste is broken down into its non-contaminating components by the combined action of the fluid component and the biological component. The parts washer system does not require frequent fluid replacement due to recirculation. The only fluid loss is that due to evaporation. Structurally, the apparatus of the present invention is a parts washer with a multi-tiered sink structure, and a readily accessible and replaceable filter. Parts are washed and resultant organic waste is continuously recirculated in a closed

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Parts washing system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Parts washing system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Parts washing system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2901005

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.