Parts transfer and control circuit system

Handling: hand and hoist-line implements – Grapple – Slideable jaws

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C414S798900

Reexamination Certificate

active

06224124

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention provides an apparatus and control circuit for transfer of parts between a first manufacturing operation and a second manufacturing operation.
More specifically, the present invention provides a gripper jaw assembly to grasp and separate a plurality of chain link plates from a first pressing or stamping operation for their transfer to a second manufacturing operation. The link plates may be in a continuously advancing line of link plates being discharged from a press operation. The gripper jaw assembly is mounted on the distal end of a robotic apparatus with a flexible arm, which gripper jaw is pivotable at the flexible arm end. The proximal end of the flexible arm apparatus is secured to and pivotable about a base, which may be secured to a floor or otherwise permanently mounted. The several assemblies or operations, that is the gripper jaw assembly, the flexible arm, the first press and the second press, are mechanical elements having a plurality of strategically positioned sensors, which sensors are coupled to a central processing unit (CPU) or computer, either directly or through controllers, for control of the operations, sensors and apparatus. The computer is operable to receive signals from any of the sensors and controllers and to communicate control signals to the controllers and operating elements in response to the sensed signals.
Robotic apparatus for manufacturing processes are utilized in various industries and technologies. The specific uses for such robotic apparatus include computer-controlled automatic welding machines in the automotive industry, as well as multi-spindle drilling apparatus for machining industries. Other known uses include assembly and grinding operations. However, all of these applications of such flexible arm or robotic apparatus require operating heads for the specific automated task. The flexible arm of the robotic apparatus provides a large range of motion and a plurality of potential distal end locations in a three-dimensional array of positions. Use of the flexible arm removes an operator from potentially harmful locations in proximity to moving, spinning, pressing, punching or welding operations, and it provides a means to reduce the labor-hours per operation as an economic benefit. Illustrations of such flexible arm apparatus are various models from ABB Flexible Automation Inc. of New Berlin, Wis. noted as IRB 2400. These assemblies and apparatus are described in a brochure, Maestro System 4 Product Line, of May 1996.
The manufacture of roller-chain link plates and chains of all types can involve a large number of mechanical operations. As an example, roller chain manufacture utilizes multiple high-speed presses, which may include sequential punch press operations, to generate the link plates. Other operations may include drill presses, riveting equipment, welding, cold-heading and turning equipment. Each of these mechanical activities can be a high-speed operation, which can present a potential hazard to an operator. Consequently, there have been continuous attempts to automate various steps or operations in manufacturing practices to minimize the danger to employees, as well as to speed the processing activity. As noted above, automating the repetitive steps of the manufacturing process takes an operator out of a potentially hazardous location, for example, it moves an operator away from a punch press operation. Other potentially dangerous operations include drill presses and welding operations. In addition to the health and safety benefits from the automation of manufacturing operations, economic benefits accrue from the use of machinery to perform repetitive tasks previously performed by manual labor.
Acquisition and automatic transfer of relatively small parts between manufacturing operations requires technique, unique tooling, machine and transfer equipment speed, and tooling dexterity. These are requisite attributes as small parts manufacture is frequently a high-volume or high-speed operation. The tooling must be reliable and agile to handle the parts, and operational techniques may require accommodating parts acquisition by tooling in a physically demanding or constrained environment. In the case of link plates for roller chain, each plate may be less than one inch in length with a wall thickness less than one-quarter inch. The link plates will be formed with an hour-glass shape, which physical characteristics are not conducive to being grasped by a large mechanical apparatus. Therefore, the operational techniques and, the ancillary handling and transfer equipment or tooling become necessary elements in the automation-of-manufacturing equation.
SUMMARY OF THE INVENTION
The present invention provides an automated parts handling assembly with tooling to receive parts from a first operation, parts grasping tooling, apparatus to transfer parts between operations, tooling to receive transferred parts for feeding to a second operation, as well as, the control circuits with signal sensors and analytic controllers for controlling the several operations and techniques for continuous manufacturing operations. The parts transfer apparatus includes a robotic device with a spatially programmable flexible arm for movement within a three dimensional array of locations. A gripper jaw assembly, which is independently pivotable at the distal end of the flexible arm, is positionable over aligned, on-edge link plates and actuable to grasp a plurality of link plates for transfer to another location.
In a specific application, roller-chain, link-plate blanks are formed on a continuously operating punch press and fed onto a discharge tray with parts guide rods operable to conform to the contour of the on-edge link plates, which maintains them in a tightly aligned row on the discharge tray. The gripper jaw assembly is positioned to grasp the link plates. Parts wipers at the rear of the gripper jaws to separate the tightly packed link plates being grasped by the gripper jaws from the continuously fed line of link plates on the discharge tray. The grasped link plates are maintained in alignment in the gripper jaws and communicated to a tube feeder for a secondary operation. The tube feeder accepts and maintains the link plates in an aligned manner, and accommodates the gripper jaw assembly for placement of the link plates in the tube feeder.
Control of the grasping, transfer and feeding of the link-plates, as well as the synchronization of these several movements with the manufacturing equipment and operations, is accommodated by an integral network of strategically positioned sensors, equipment controllers and a computer controller, CPU, coupled to the several sensors and controllers to receive input signals and to provide output control signals.


REFERENCES:
patent: 3228538 (1966-01-01), Coates
patent: 4345866 (1982-08-01), Greene
patent: 4699414 (1987-10-01), Jones
patent: 4822091 (1989-04-01), Vermeer et al.
patent: 4852928 (1989-08-01), Monforte
patent: 5441382 (1995-08-01), Mojden et al.
patent: 5586638 (1996-12-01), Mojden et al.
ABB Flexible Automation, 2487 South Commerce Drive, New Berlin, WI 53151; Maestro System 4® Product Line, Dated May 1996, p. 3, Model No. IRB 2400/10.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Parts transfer and control circuit system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Parts transfer and control circuit system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Parts transfer and control circuit system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2511191

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.