Particulate electrode including electrolyte for a...

Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S217000, C429S231950, C429S231100, C429S232000, C429S235000, C429S236000, C429S241000, C429S231400, C429S129000, C429S142000

Reexamination Certificate

active

06815121

ABSTRACT:

FIELD OF INVENTION
This invention is related to electrochemical cells, more particularly, to rechargeable lithium ion electrochemical cells.
BACKGROUND OF THE INVENTION
Rechargeable lithium batteries are often utilized in applications where high energy density is a requirement. A lithium battery may contain one lithium electrochemical cell, but more commonly it consists of several lithium electrochemical cells in series or parallel, or a combination of such connections.
Lithium electrochemical cells are frequently packaged in cylindrical containers, or are button shaped, or laminar, sometimes referred to as thin profiled cells, packaged and sealed in multi-layered polymer laminates.
The electro-active particles of the negative electrode of a lithium electrochemical cell, are usually but not necessarily, graphite particles or carbonaceous particles of similar nature, which are capable of reversibly intercalating lithium ions. Other particulate substances which are capable of reversibly intercalating lithium, can also be utilized as negative-active particles. Lithium metal or lithium alloy, subject to certain conditions, may also be used as negative electrode material. The most commonly used electro-active particles in the positive electrode of lithium batteries are particles of lithiated transition metal oxides and sulphides, however, any other similar substance capable of reversibly intercalating lithium in its structure can be used. The electrolyte of a lithium cell is a non-aqueous liquid or a polymer containing mobile or dissociable lithium ions, or it can be a lithium salt containing glassy material, which is liquid at the temperature of operation of the lithium ion cell. The electrolyte of the cell is conductive for lithium ions but is an insulator with respect to electrons. The electrodes of a lithium electrochemical cell are usually separated from one another by some form of a separator. Negative and positive current collectors located adjacent the appropriate electrodes, provide electrical leads for charging and discharging the lithium ion electrochemical cell.
The electrolyte of a lithium electrochemical cell or battery, for obvious reasons, has an important role in the working of the cell, thus there are many known types of electrolytes utilized in lithium batteries. The electrolyte may be a non-aqueous, organic liquid having a lithium salt dissolved therein. The advantage of a liquid electrolyte is that the mobility of lithium ions is usually higher in a liquid than in a solid, however, the organic liquid may be lost by seepage if the container is punctured or damaged. The organic liquid is frequently an organic carbonate, or mixtures of such, but there are many other known organic compounds which have the required properties. Another frequently utilized form of electrolyte is a solid polymer layer bearing dissociable lithium compounds, such as for example, described in U.S. Pat. No. 5,436,091, issued to Shackle et al. on Jul. 25, 1995. It is noted that such polymer electrolyte layers frequently play the role of an electrode separator as well. In yet another form of electrolyte an inert porous polymer and a curable or polymerizable absorbent gelling compound are combined, and the combination is impregnated with an organic liquid containing a lithium salt, either before or after polymerization of the absorbent gelling compound. Such an electrolyte system is described, for example, in U.S. Pat. No. 5,681,357, issued to Eschbach et al. on Oct. 28, 1997.
It is also known to have an electrode paste comprising electro-active particles mixed with polymer electrolyte precursors and a lithium compound, which is subsequently fully polymerised to form an ionically conductive electrode layer. The electrode paste may additionally contain an ion conducting binder, such as for instance, a fluoropolymer. In the case of preparing a positive electrode or cathode layer containing cathode particles, in addition to polymerised electrolyte particles bearing a lithium compound and binders, fine carbon can also be added for electrical conduction. Fauteux et al. in U.S. Pat. No. 4,925,752, issued on May 15, 1990, teach a cathode paste made of a mixture of particles of vanadium oxide, polyethylene oxide, fine carbon, a lithium salt, propylene carbonate and a radiation curable acrylate. The cathode paste may be overlain with a curable, lithium salt containing electrolyte layer which also separates the cathode layer electrically from the negative electrode or anode, and the layers bearing polyethylene oxide and radiation curable acrylate are polymerized to form a tightly adherent layered cell assembly.
There are known rechargeable lithium cells in which the electrolyte particles are mixed with the electro-active particles and an ion conducting binder to form an electrode-electrolyte mixture which is then separated by means of a porous separator from the other electrode, such that electronic short circuiting between the electrodes is avoided but without hindering the passage of lithium ions between the electrodes.
Other known lithium ion electrochemical cell structures can be prepared by forming a negative electrode or anode slurry composed of carbonaceous electro-active particles, an ion conducting fluoropolymer dispersed in a low boiling point solvent and dibutyl phthalate as plasticizer, a positive electrode or cathode slurry composed of lithium ion bearing positive-active particles, an ion conducting fluoropolymer dispersed in a low boiling point solvent, dibutyl phthalate and electroconducting carbon particles, and an electrolyte slurry made of an ion conducting fluoropolymer dispersed in a low boiling point solvent and dibutyl phthalate, each cell component forming a separate entity. An example of this method is described in U.S. Pat. No. 5,756,230, issued to Feng Gao et al. on May 26, 1998, the obtained slurries are spread to form layers, the low boiling point solvent allowed to evaporate, the dibutyl phthalate is then extracted thereby leaving porous polymeric web structures which are subsequently assembled into lithium electrochemical cell precursors. Another example of such method is U.S. Pat. No. 5,571,634, issued to Gozdz et al. on Nov. 5, 1996, wherein the separator is comprising a PVDF copolymer and an organic plasticizer, each electrode is composed of appropriate electro-active particles dispersed in a PVDF copolymer matrix, and the each layer, namely, the negative electrode layer, the positive electrode layer and the electrolyte layer forms a flexible self-supporting cell element. It is noted that neither the ion conducting matrix carrying the electro-active particles, nor the separator element, contain any lithium bearing compound at the time of assembling the lithium cell precursor layers. Furthermore, the ion conducting matrix comprised in the electrodes is in the form of a laminate in which the ion conducting particles are randomly distributed, without any specific structural form, such as filaments.
It is noted that one of the conventional electrolyte systems utilized in rechargeable laminar lithium batteries is a combination of a solid, lithium ion conducting polymer electrolyte layer with an organic liquid solution having a dissolved lithium salt therein. The lithium compound in the solid polymer is usually but not necessarily, the same lithium compound that is dissolved in the organic solution.
It can be seen that in all the above discussed lithium electrochemical cells the role of the electrolyte is to allow dissociable lithium ions of various nature to be available for electrolytic movement and conduction in the proximity of the electro-active particles. Such objectives are frequently achieved by cell component layers being relatively tightly packed together. It is, however, known that the thickness of cathode and anode layers may change during cycling the cell through charging and discharging steps. Furthermore, the layers may also delaminate in small areas for different reasons. It is thus desirable to provide some indigenous elasticity between the electro-active an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Particulate electrode including electrolyte for a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Particulate electrode including electrolyte for a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Particulate electrode including electrolyte for a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3325294

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.