Particle filter of metal foil and process for producing a...

Gas separation – Deflector – Plural deflectors overlapped and spaced serially in gas flow

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C055S521000, C055S525000, C029S896620

Reexamination Certificate

active

06576032

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to a particle filter of metal foil having mutually adjacent channels through which a fluid can flow. Each channel has at least one inlet and an outlet. The particle filter also has adjacent first and second channels. The first channel has an open entry cross section at a first end side of the particle filter. The invention also relates to a process for producing a particle filter.
European Patent 0 134 002 B1 has disclosed a diesel exhaust filter made from woven wire cloth and a process for its production. The diesel exhaust filter is constructed from layers which can be placed on top of one another or shaped helically to form an assembly. A layer includes a corrugated or folded screening cloth and a planar, continuous or perforated covering layer. Two end surfaces of the diesel exhaust filter are constructed in such a way that a closed end-face section lies opposite an open end-face section and an end-face section is closed by pinching. The corrugated or folded layer is pressed onto the planar layer in folds for that purpose.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a particle filter of metal foil and a process for producing a particle filter, which overcome the hereinafore-mentioned disadvantages of the heretofore-known products and processes of this general type and which allow simplified production of the particle filter while at the same time producing a large surface area in the particle filter.
With the foregoing and other objects in view there is provided, in accordance with the invention, a particle filter, comprising first and second end sides. A metal foil forms walls defining mutually adjacent channels through which a fluid can flow. Each of the channels has at least one inlet and at least one outlet. The channels include first and second adjacent channels defined by the walls formed of the metal foil. The first channel has an open entry cross section at the first end side extended at least partway into the first channel. The second channel has an open exit cross section at least substantially corresponding to the entry cross section. At least one of the walls defining the first channel has perforations formed therein as filter passages leading to the second channel. A closure is disposed at the first channel, opposite the entry cross section and toward the second end side, for closing off the first channel to the fluid, at least as far as possible.
The fact that the walls of the first and second channels are made from metal foil means that they each have a large surface area which comes into contact with the fluid. While only the individual filaments of the cloth are available as surface area when using a woven wire cloth, a wall which helps to form the first channel has a surface that is continuous apart from the perforations. The perforations, acting as filter passages leading to the adjacent second channel, also have a surface with which the fluid can come into contact. Therefore, compared to a woven wire cloth, a perforated wall of that type has a larger surface area which also has a larger active surface area, for example, either when provided with a suitable coating or when the material of the metal foil is selected appropriately. It can be utilized for catalytic or other reactions or possible applications of a particle filter of that type.
The advantage of a large surface area is combined with the advantage that such a particle filter can be produced in a small number of working steps. The perforations which are required are, for example, prefabricated in the metal foil. The corresponding shaping to form the individual channels is advantageously completed in a single working step, irrespective of whether or not the metal foil has perforations. By way of example, it is advantageous if all of the walls which form the channels have perforations, so that during production the metal foil or foils can be processed independently of position and orientation.
Furthermore, perforating metal foil enables an accurate position of the filter passages to be achieved in the subsequent particle filter. While woven wire cloth is at risk of filaments shifting during processing, that is impossible in the case of perforations in the metal foil. That type of filter passages also enables the density of perforations to be varied over the metal foil and therefore the channel wall which is to be formed. It also enables a diameter of such a perforation to be varied. That option can be employed in particular if different filter stages are to be formed in the particle filter.
In order to avoid a high pressure loss across the particle filter, the second channel has an open exit cross section which corresponds to the entry cross section. As a result, it is possible for the pressure loss to be set approximately proportionally to the number and dimensions of the perforations. In accordance with another feature of the invention, the closure of the first channel of the particle filter is constructed in such a way that it does not allow any fluid to pass through. In this case, the filter passages form the only entry to the second channel. The closure of the first channel serves as a barrier wall, so that the fluid is forced through the filter passages. Particles contained in the flow of fluid which accumulate at the filter passages are then collected in the region of the closure. This can be assisted, for example, by providing a type of cage in the region of the closure. Due to the formation of the flow in the region of the closure, it is possible for a dammed region of the fluid formed at that location to be utilized in such a way that although particles do reach that region, they are then deposited in that region. Consequently, the filter passages remain clear and the particle filter requires fewer regeneration cycles. The particle filter may have suitable regeneration measures for regeneration such as, for example electrical heating, a catalytic coating or the like, in the region of the closure.
In accordance with a further feature of the invention, in order to simplify production of the particle filter, the first channel and the second channel have the same structure but are disposed in opposite directions relative to one another. This means that only one production tool is required for a metal foil. In the case of a particle filter having a layered structure, all of the metal foils can initially pass through production in one direction, and are only subsequently turned so that they alternate in opposite directions relative to one another. Advantageously, the first and second channels also form a honeycomb body which can preferably be produced in this way, with first and second channels alternating.
In accordance with an added feature of the invention, the walls of the first and second channels are formed from a single metal foil. This enables the metal foil to be unwound from a roll of metal foil, then subjected to a desired perforation step and for a desired shape to be imposed on the metal foil in the processing station which follows. The metal foil can then be formed into the particle filter either in wound or layered form. It is only at this working step that it is necessary for the metal foil to be cut off the roll of metal foil. The particle filter which has been layered or wound in this manner has joins that are produced, for example, by brazing, at locations where the individual walls touch one another.
In accordance with an additional feature of the invention, it is preferable to use a metal foil which has a coating before it is processed. This coating may either be of a catalytic nature, with the result that the surface of the particle filter is once again increased in size considerably due to the coating, or the coating may also include a joining element, such as, for example, brazing material, for joining walls of the particle filter which are in contact with one another. For this purpose, by way of example, the joining element is applied to the metal foil

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Particle filter of metal foil and process for producing a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Particle filter of metal foil and process for producing a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Particle filter of metal foil and process for producing a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3154566

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.