Particle analysis system and method

Optics: measuring and testing – For size of particles – By particle light scattering

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

356342, G01N 2151

Patent

active

058185836

ABSTRACT:
A system and method are disclosed for the self-calibrating, on-line determination of size distribution and volume fraction of a number of particles dispersed in a medium by detecting multiply scattered light from the particles. The multiply scattered light is re-emitted in response to exposure to a light source configured to provide light of time varying intensity at selected wavelengths. The determination includes calculating the isotropic scattering coefficient for the particles at each of a number of wavelengths from the multiply scattered light as a function of an intensity modulation phase shift, and iteratively estimating the size distribution and volume fraction as a function of the isotropic scattering coefficient for each of the wavelengths. An estimation approach based on an expected form of the distribution and the mass of the particles is also disclosed.

REFERENCES:
patent: 4245909 (1981-01-01), Loos
patent: 4641969 (1987-02-01), Lundberg et al.
patent: 4781460 (1988-11-01), Bott
patent: 4871251 (1989-10-01), Preikschat et al.
patent: 4890920 (1990-01-01), Niziolek et al.
patent: 5164787 (1992-11-01), Igushi et al.
patent: 5229839 (1993-07-01), Hayashi et al.
patent: 5416580 (1995-05-01), Trainer
patent: 5438408 (1995-08-01), Weichert et al.
patent: 5455675 (1995-10-01), Witt et al.
patent: 5502561 (1996-03-01), Hutchins et al.
Huabei Jiang, Keith D. Paulsen, Ulf L. Osterberg, Brian W. Pogue and Michael S. Patterson, Optical Image Reconstruction Using Frequency-Domain Data: Simulations and Experiments, Journal of the Optical Society of America, Sep. 1995, at 253.
Alwin Kienle, Lothar Lilge, Michael S. Patterson, Raimund Hibst, Rudolf Steiner, and Brian C. Wilson, Spatially Resolved Absolute Diffuse Relectance Measurements for Noninvasive Determination of the Optical Scattering and Absorption Coefficients of Biological Tissue, Applied Optics, May 1996, vol. 35, No. 13 at 2304.
Pi-Huan Wang, Geoffrey S. Kent, M. Patrick McCormick, Larry W. Thomason, and Glenn K. Yue, Retrieval Analysis of Areosol-Size Distribution with Simulated Extinction Measurements at SAGE III Wavelengths, Applied Optics, Jan. 1996, vol. 35, No. 3, at 433.
Kusiel S. Shifrin and Ilja G. Zolotov, Spectral Attenuation and Aerosol Particle Size Distribution, Applied Optics, Apr. 1996, vol. 35, No. 12, at 2114.
Jianhong Wang and F. Ross Hallett, Spherical Particle Size Determination by Analytical Inversion of the UV-Visible-NIR Extinction Spectrum, Applied Optics, Jan. 1996, vol. 35, No. 1, at 193.
Sergei A. Vinogravod, Leu-Wei Lo, William T. Jenkins, Sydney M. Evans, Cameron Koch, and David F. Wilson, Noninvasive Imaging of the Distribution in Oxygen in Tissue in Vivo Using Near-Infrared Phosphors, Biophysical Journal, Apr. 1996, vol. 70, at 1609-1617.
Joshua B. Fishkin, Peter T.C. So, Albert E. Cerussi, Sergio Fantini, Maria Angela Franceschini, and Enrico Gratton, Frequency-Domain Method for Measuring Spectral Properties in Multiple-Scattering Media: Methemoglobin Absorption Spectrum in a Tissuelike Phantom, Applied Optics, Mar. 1995, vol. 34, No. 7, at 1143.
Heimo Schnablegger and Otto Glatter, Sizing of Colloidal Particles with Light Scattering: Corrections for Beginning Multiple Scattering, Applied Optics, Jun. 1995, vol. 34, No. 18, at 3489.
Robert J. Farrell and Yen-Cheng Tsai, Nonlinear Controller for Batch Crystallization: Development and Experimental Demonstration, AIChE Journal, Oct. 1995, vol. 41, No. 10, at 2318.
M.A. O'Leary, D.A. Boas, B. Chance, and A.G. Yodh, Experimental Images of Heterogeneous Turbid Media by Frequency-Domain Diffusing-Photon Tomography, Optics Letters, Mar. 1995, vol. 20, No. 5, at 426.
Jozef Vavra, Jozef Antalik and Marek Liska, Application of Regression Analysis in Spectroturbidity Size--Characterization Methods, Part. Part. Syst. Charact. 12, 1995, 38-41.
Richard C. Haskell, Lars O. Svaasand, Tsong-Tseh Tsay, Ti-Chen Feng, Matthew S. McAdams and Bruce J. Tromberg, Boundary Conditions for the Diffusion Equation in Radiative Transfer, Journal of the Optical Society of America, Oct. 1994, vol. 11, No. 10, at 2727.
Nai-ning Wang, Gang Zheng, and Xiao-shu Cai, A Theoretical and Experimental Study of the Total Light Scattering Technique for Particle Size Analysis, Part. Part. Syst. Charact. 11, Feb. 1994, at 309-314.
John Dimitratos, Guillermo Elicabe, and Christos Georgakis, Control of Emulsion Polymerization Reactors, AIChE Journal, Dec. 1994, vol. 40, No. 12, at 1993.
Ronald G. Sparks and Charles L. Dobbs, The Use of Laser Backscatter Instrumentation for the On-Line Measurement of the Particle Size Distribution of Emulsions, Part. Part. Syst. Charact. 10, Jul. 1993, at 279-289.
James R. Rawlings, Stephen M. Miller, and Walter R. Witkowski, Model Indentification and Control of Solution Crystallization Processes: A Review, Ind. Eng. Chem. Res., 1993, vol. 32, No. 7, at 1276.
D. Jeffrey Lischer and Michel Y. Louge, Optical Fiber Measurements of Particle Concentration in Dense Suspensions: Calibration and Simulation, Applied Optics, Aug. 1992, vol. 31, No. 24, at 5106.
R. Graaff, J.G. Aarnoudse, Jr. Zijp, P.M.A. Sloot, F.F.M. Mul, J.Greve, and M.H. Koelink, Reduced Light-Scattering Properties for Mixtures of Spherical Particles: A Simple Approximation Derived from Mie Calculations, Applied Optics, Apr. 1992, vol. 31, No. 10, at 1370.
L. H. Garcia-Rubio, Refractive Index Effects on the Absorption Spectra of Macromolecules, Macromolecules, 1992, at 2608.
Guillermo E. Elicabe and Luis H. Garcia-Rubio, Latex Particle Size Distribution from Turbidimetric Measurements, Polymer Characterization, 1990, at 84.
J. Jager, H.J.M. Kramer, E.J. De Jong, On-Line Particle Size Measurement in Dense Slurries, Powder Technology, 1990, at 155-162.
Seth Fraden and Georg Maret, Multiple Light Scattering from Concentrated, Interacting Suspensions, Physical Review Letters, Jul. 1990, vol. 65, No. 4, at 512.
John C. Thomas and Victoria Dimonie, Fiber Optic Dynamic Light Scattering from Concentrated Dispersion, 3: Particle Sizing in Concentrates, Applied Optics, Dec. 1990, vol. 29, No. 36, at 5332.
Joseph Pierce, Dilip Paithankar, Christina Hutchinson, David Taylor and Eva Sevick-Muraca, Particle Size Measurement in Suspensions through Frequency-Domain Photon Migration Measurements, Presentation to Fine Particle Society Meeting of Aug. 25, 1995.
Michael S. Patterson, Steen J. Madsen, J. David Moulton and Brian C. Wilson, Diffusion Equation Representation of Photon Migration in Tissue (date unknown).
Akira ishimaru, Robert J. Marks, II, Leung Tsang, Chi M. Lam, and Dong C. Park, Optical Sensing of Particle Size Distribution by Neural Network Technique (date unknown).
Eva M. Sevick-Muraca and Kavi Sharma, Measurements of Photon Migration for Particle Sizing in Optically Dense Suspensions, AIChE Journal, Nov. 1994.
Patterson, M.S., J.D. Moulton, B.C. Wilson, and B. Chance, Applications of time-resolved Light Scattering Measurements using Phase Modulation Spectroscopy, Proc. SPIE, Int. Soc., Opt. Eng., 1203, 62 (1991).
Eva M. Sevick-Muraca and Dilip Paithankar, Process Monitoring: Photon Migration Measurements in Particulate Systems, Fine Particle Society Meeting Aug., 1995.
Dilip Painthankar, Jeff Kao, and Eva Sevick-Muraca, Particle Size Distribution Estimation Via Solution of the Inverse Problem of Multi-Wavelength Scattering Coefficient Measurements, Chem. Eng. Prog., Aug. 1995.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Particle analysis system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Particle analysis system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Particle analysis system and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-84901

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.