Dynamic magnetic information storage or retrieval – Head mounting – Disk record
Reexamination Certificate
1997-03-27
2002-04-16
Ometz, David L. (Department: 2652)
Dynamic magnetic information storage or retrieval
Head mounting
Disk record
C360S245600
Reexamination Certificate
active
06373662
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is an improved magnetic head suspension assembly (HSA) for use with dynamic magnetic storage devices or rigid disk drives. More exactly, it is a head suspension assembly that has a one-piece structure constructed with a load beam and a flexure region. Specifically, this invention describes improvements in the construction of the flexure region to improve dynamic performance of the HSA, decrease pitch and roll stiffnesses, increase lateral and in plane stiffnesses, improve manufacturability, and improve head bond location.
Conventionally available magnetic head suspension assemblies for rigid disk drives allow magnetic read/write heads to pitch about a first or transverse axis and roll about a second or longitudinal axis, orthogonal to the first axis, when imperfections in the disk drive assembly tend to place the heads in improper positions relative to the associated disk surface. The present invention allows significant reductions in the pitch and roll stiffness of the head suspension assembly, thus allowing the heads to easily maintain proper attitude to the disk. At the same time, the present invention increases stiffness in the direction of rotation of the disk to maintain proper head position with respect to the suspension assembly. Further, the invention resists permanent distortion to the HSA which can be caused by forces in all directions.
Conventional head suspension assemblies consist of a support baseplate, load beam, and flexure, which are usually separately etched, stamped and then welded together. According to the present invention, the flexure is constructed as an integral part of the load beam, which reduces manufacturing steps and improves the ability to manufacture the HSA with the proper head position and attitude.
Conventional head suspension attachments or base plates are welded to the load beam and attached to an actuator arm and are generally configured for swage or screw attachment means. As described in commonly assigned U.S. Pat. No. 5,198,945, issued Mar. 30, 1993, the attachment means is an integral part of the load beam. This method of attachment avoids welding, thus reducing process steps, easing disk drive assembly, and improving the ability to position the head properly with respect to the actuator arm. The load beam attaches to the actuator arm by an attachment means employing an interference fit, such as a clip.
As also described in U.S. Pat. No. 5,198,945, the load beam can be attached to the actuator arm by a shrink fit interference means encircling the arm and load beam(s). Such a shrink fit can be performed by heating the shrink fit interference means to expand and then contract around the actuator arm and load beam(s), or by heating the shrink fit interference means to simply contract around the actuator arm and load beam(s). This method of attachment reduces the number of components and process steps, and allows the HSA to be attached to and removed from the actuator arm easily.
Conventional means for positioning and aligning the read/write head to the suspension assembly, when attaching the head suspension assembly to the actuator arm, is to place an alignment pin through a hole in the load beam, another alignment pin through a hole(s) in the baseplate, and mount the baseplate and the actuator arm with screws or with the baseplate boss. As also described in U.S. Pat. No. 5,198,945, an alignment pin is positioned through a hole in the load beam and another alignment pin is positioned through a slot at the base end to improve the accuracy and ease of positioning the head with respect to the suspension assembly and to facilitate the alignment of the head suspension assembly with respect to the actuator arm. As can be readily understood, this arrangement may equally well be reversed, with a hole positioned in the base end and a slot positioned in the load beam. The pin/hole registration will keep the parts aligned in the x and y directions, while the pin/slot registration keeps the parts from rotating about the z axis. Further, a single one-piece suspension structure constructed with both a load beam region and a flexure region eliminates the tolerance build up from welding three separate components together and allows the head location to depend solely on the precision manufacture of the holes and slots.
Conventionally available magnetic head suspension assemblies have load beams with rails extending either away from the rigid disk or toward the rigid disk, as shown in commonly assigned co-pending application Ser. No. 08/050,517, filed Apr. 20, 1993, which in turn is a continuation of Ser. No. 07/583,048, filed Sep. 14, 1990, now abandoned.
In the prior art, the rail oriented to project from the surface of the load beam, away from the associated disk surface, offered increased clearance between the disk and the load beam for lifting the load beam, while the rail oriented toward the disk surface offered increased clearance between two back to back head suspension assemblies and allowed for closer disk spacing. The present construction offers increased clearance on both sides of the head suspension assembly for lifting the load beam and for allowing closer disk spacing. U.S. Pat. No. 5,198,945 uses a rail form line that is not parallel to the disk surface over its entire length but is closer to the disk at the slider end and withdrawn from the disk at the base end, such that the lift clearance can be maximized near the base plate and the disk spacing clearance can be maximized near the slider.
BRIEF DESCRIPTION OF THE INVENTION
According to the present invention, a magnetic head suspension, for supporting a magnetic head at a fixed distance from a rigid actuator arm, has a single one-piece structure having a flexure region and a load beam region. In the single one-piece structure, a proximal end of the load beam region is joined to the rigid actuator arm, and the flexure region projects distally beyond the load beam region. The flexure region is divided into a planar head support region, and a set of at least two flexible arms, defined by a first set of slots in a surface of the flexure region. The head support region is constructed and arranged for receiving a head slider to be bonded thereto. The slots which define the set of at least two flexible arms also define a perimeter of the head support region. Each of the arms generally enclose at least a part of a perimeter of the head support region. The arms are constructed and arranged for flexible suspension of the head support region by formed offsets, which position a plane of the head support region recessed from a plane of the load beam region. The slot patterns together with the offsets can be referred to as an arrangement of offset forms.
Also according to this invention, a magnetic head suspension, for supporting a magnetic head at a fixed distance from a rigid actuator arm, has a single one-piece structure having a flexure region and a load beam region. A proximal end of the load beam region is joined to the rigid actuator arm. The flexure region projects distally beyond the load beam region. The flexure region is divided into a head support region, a first set of flexible arms, defined by a first set of slots in a surface of the flexure region, and a second set of flexible arms, defined by a second set of slots in a surface of the flexure region. The flexure region is constructed and arranged for receiving a head slider to be bonded thereto. The first set of slots, which defines the first set of flexible arms, also defines a perimeter of the head support region. Each of the first set of arms generally encloses at least a part of the perimeter of the head support region. The slots of at least one of the flexible arms are generally arcuate. The second set of flexible arms is defined by a second set of slots in the surface of the flexure region. The second set of slots also defines a perimeter of the first set of arms. The second set of arms is constructed and arranged with formed offsets, which position a plane of the head support reg
Blaeser David J.
Jurgenson Ryan A.
Faegre & Benson LLP
Hutchinson Technology Incorporated
Ometz David L.
LandOfFree
Partially etched flexure arms in an integrated gimbal... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Partially etched flexure arms in an integrated gimbal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Partially etched flexure arms in an integrated gimbal... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2866519