Partially demineralized cortical bone constructs

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Implant or insert

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S422000, C424S400000

Reexamination Certificate

active

06432436

ABSTRACT:

FIELD OF INVENTION
The present invention is generally directed toward a surgical bone product and more specifically is a shaped partially demineralized allograft bone device or construct with a mineralized central section.
BACKGROUND OF THE INVENTION
The use of substitute bone tissue dates back around 1800. Since that time research efforts have been undertaken toward the use of materials which are close to bone in composition to facilitate integration of bone grafts. Development have taken place in the use of grafts of a mineral nature such as corals, hydroxyapatites, ceramics or synthetic materials such as biodegradable polymer materials. Surgical implants should be designed to be biocompatible in order to successfully perform their intended function. Biocompatibility may be defined as the characteristic of an implant acting in such a way as to allow its therapeutic function to be manifested without secondary adverse affects such as toxicity, foreign body reaction or cellular disruption.
Human allograft tissue is widely used in orthopaedic, neuro-, maxiliofacial, podiatric and dental surgery. The tissue is valuable because it is strong, biointegrates in time with the recipient patient's tissue and can be shaped either by the surgeon to fit the specific surgical defect or shaped commercially in a manufacturing environment. Contrasted to most synthetic absorbable or nonabsorbable polymers or metals, allograft tissue is bioinert and integrates with the surrounding tissues. Allograft bone occurs in two basic forns; cancellous and cortical. Cortical bone is a highly dense structure comprised of triple helix strands of collagen fiber, reinforced with hydroxyapatite. The cortical bone is a compound structure and is the load bearing component of long bones in the human body. The hydroxyapatite component is responsible for the high compressive strength of the bone while the collagen fiber component contributes in part to torsional and tensile strength.
Many devices of varying shapes and forms can be fabricated from allograft cortical tissue by machining and surgical implants such as pins, rods, screws, anchors, plates, intervertebral spacers and the like have been made and used successfully in human surgery. These engineered shapes are used by the surgeon in surgery to restore defects in bone to the bone's original anatomical shape. This treatment is well known in the art and is commercially available as demineralized bone.
Allograft bone is a logical substitute for autologous bone. It is readily available and precludes the surgical complications and patient morbidity associated with obtaining autologous bone as noted above. Allograft bone is essentially a collagen fiber reinforced hydroxyapatite matrix containing active bone morphogenic proteins (BMP) and can be provided in a sterile form. The demineralized form of allograft bone is naturally both osteoinductive and osteoconductive. The demineralized allograft bone tissue is fully incorporated in the patient's tissue by a well established biological mechanism. It has been used for many years in bone surgery to fill the osseous defects previously discussed.
Demineralized allograft bone is usually available in a lyophilized or freeze dried and sterile form to provide for extended shelf life. The bone in this form is usually very coarse and dry and is difficult to manipulate by the surgeon. One solution to use such freeze dried bone has been provided in the form of a commercially available product, GRAFTON®, a registered trademark of Osteotech Inc., which is a simple mixture of glycerol and lyophilized, demineralized bone powder of a particle size in the range of 0.1 cm to 1.2 cm as is disclosed in U.S. Pat. No. 5,073,373 issued Dec. 17, 1991 forming a gel. Similarly U.S. Pat. No. 5,290,558 issued Mar. 1, 1994, discloses a flowable demineralized bone powder composition using a osteogenic bone powder with large particle size ranging from about 0.1 to about 1.2 cm. mixed with a low molecular weight polyhydroxy carrier possessing from 2 to about 18 carbons comprising a number of classes of different compounds such as monosaccharides, disaccharides, water dispersible oligosaccharides and polysaccharides.
A recent version of GRAFTON® product uses relatively large demineralized particles in the carrier to create a heterogenous mixture which provides body or substance to the composition. This material is useful in filling larger defects where some degree of displacement resistance is needed by the filler.
The advantages of using the bone particle sizes as disclosed in the U.S. Pat. Nos. 5,073,373 and 5,290,558 patents previously discussed were compromised by using bone lamellae in the shape of threads or filaments having a median length to median thickness ratio of about 10:1 and higher while still retaining the low molecular weight glycerol carrier. This later prior art is disclosed in U.S. Pat. Nos. 5,314,476 issued May 24, 1994 and U.S. Pat. No.5,507,813 issued Apr. 16, 1996 and the tissue forms described in these patents are known commercially as the GRAFTON® Putty and Flex, respective.
The combination of natural cortical bone with very desirable mechanical strength and the addition of synthetic (recombinant) BMPs provides a superior form of tissue for surgical use retaining all of the mechanical properties of the cortical component and the accelerated healing offered by the BMP's.
U.S. Pat. No. 5,972,368 issued on Oct. 26, 1999 discloses the use of cortical contructs (e.g. a cortical dowel for spinal fusion) which are cleaned to remove all of the cellular material, fat, free collagen and non-collagenous protein leaving structural or bound collagen which is associated with bone mineral to form the trabecular struts of bone. It is stated that the natural crystalline structure of bone is maintained without the risk of disease transmission or significant immunogenicity. Thus the shaped bone is processed to remove associated non-collagenous bone proteins while maintaining native bound collagen materials and naturally associated bone minerals. Recombinant BMP-2 is then dripped onto the dowel surface. It could also be added to the cortical bone by soaking in the BMP-2 solution. As noted, this reference teaches the removal of all non-collagenous bone proteins which necessarily include all the naturally occurring BMP's and relies upon the addition of recombinant BMP-2 in a specific and empirically determined concentration. The naturally occurring BMP's are present in a concentration unique for each specific BMP protein and has been optimized by nature. The '368 patent teaches complete removal of the natural BMP's by demineralization and relies solely on the added rhBMP's. The surface of a machined cortical bone surface is characterized by a wide variety of openings resulting from exposure by the machining process of the Haversian canals present throughout cortical bone. These canals serve to transport fluids throughout the bone to facilitate the biochemical processes occurring within the bone. They occur at variable angles and depths within the bone. Hence, when the machining occurs, the opening will be varied and unpredictable resulting in a highly variable and uncontrolled amount of BMP entering the surface of the bone.
In WO99/39,757 published Aug. 12, 1999, an osteoimplant is disclosed which uses partially demineralized bone elements and adjacent surface-exposed collagen to form chemical linkages to bond the elements into a solid aggregate. It is noted in the Description of the Preferred Embodiments, that ‘when prepared from bone derived elements that are “only superficially demineralized” that the osteoimplant will possess a fairly high compression strength approaching that of natural bone.
FIG. 2
illustrates bone-derived stacked sheets having a fully or partially demineralized outer surface
21
with surface exposed collagen and a nondemineralized or partially demineralized core
22
. As noted in Example 1, the bone sheets approximately 1.5 mm thick were placed in a 0.6N HCl solution for 1.5 ho

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Partially demineralized cortical bone constructs does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Partially demineralized cortical bone constructs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Partially demineralized cortical bone constructs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2884002

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.