Partial imaging of a substrate with superimposed layers

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S239000, C156S240000, C156S247000, C156S250000, C156S257000, C428S131000, C428S137000, C428S201000, C428S912200, C428S914000, C359S591000, C359S601000, C359S839000

Reexamination Certificate

active

06824639

ABSTRACT:

This invention concerns the partial imaging of a substrate with superimposed layers of marking material in the form of a print pattern with substantially exact registration. This methodology can be used to manufacture vision control panels, especially glass printed with ceramic ink.
A vision control panel may be defined as a light permeable material imaged with a print pattern which subdivides the panel into a plurality of imaged areas and/or a plurality of non-imaged areas. The visual properties of the light permeable material are consequently amended and are typically also dependent upon the illumination conditions on either side of the panel.
One type of vision control panel is a panel comprising a sheet of light permeable material with a design or a single colour visible from one side of the panel which is not visible from the other side of the panel, the design or single colour being superimposed on or forming at least a part of an opaque “silhouette pattern” which subdivides the panel into a plurality of opaque areas and/or a plurality of light permeable areas.
Vision control panels, typically comprising transparent materials partially imaged with a pattern of opaque marking material, are well known. U.S. Pat. No. 4,102,101 (Neilsen et al) discloses toughened glass having a pattern of white ceramic ink dots to form the walls of a squash court. By having relatively bright illumination inside the squash court and relative darkness outside, the wall surface is visible to the players and forms an adequate background against which to sight a squash ball, at the same time allowing visibility inside the court by spectators. This one-way effect is similar to that provided by net curtains or sheers. U.S. Pat. No. 4,321,778(Whitehead) discloses another type of one-way vision control panel for squash courts, having a layer of black dots, superimposed by white dots, the black dots improving the visibility into the court by spectators and TV cameras. Whitehead discloses in detail methods of manufacturing such panels using ceramic ink waterslide transfers. GB2 118 096 (Hill and Yule) discloses the protection of white on black dots and other patterns within plastic panels and methods of forming such white on black patterns. GB2 165 292 (Hill) discloses panels of transparent or translucent material having a design on one side not visible from the other side, the design being superimposed on or forming a part of a silhouette pattern. Eight basic methods are disclosed in GB2 165 292 of making such panels. Each of these eight method descriptions typically disclose several variations within each method, an example of each method 1-8 being illustrated in FIGS. 18-25, respectively, of GB2 165 292.
Another type of vision control panel is described in WO97/25213 (Hill) comprising a transparent or translucent sheet and a transparent or translucent “base pattern” of a different colour to the “neutral background” of the sheet. Methods of imaging such panels are disclosed including the imaging of a plurality of projecting surfaces defining the base pattern. GB2 174 383 B (Easton and Slavin) discloses methods of decorating glass by means of waterslide transfer.
GB2 188 873 (Hill) discloses methods and uses for methods of printing superimposed layers with substantially exact registration, including the manufacture of printed circuits and membrane switches, and obtaining the desired colour rendering of ink on non-white substrates and certain backlit illuminated displays, together with fifteen improvements to security printing, labels and seals. These methods rely on the removal of unwanted ink from a printed substrate to leave layers in substantially exact registration.
JP333/78 (Kawai), WO97/15453 (Hill) and WO98/17480 (Hill and Godden) disclose other methods of partially imaging substrates, including the selective transfer of marking material to preformed or selectively predated substrate. WO97/47481 (Mueller and Bird) discloses many methods of partially imaging substrates by digital techniques including electrostatic and thermal transfer techniques.
Method 2 of GB2 165 292 discloses the use of a transfer to form a panel according to the invention and, in particular, the use of a ceramic ink transfer in which the design and silhouette pattern are incorporated into the transfer by “method 1 or any other method,” then transferred to glass, the ceramic ink then being fused into the glass during a toughening process. One “other method” disclosed is method 8 in which a “film material can be punched, burnt, laser cut or otherwise cut normally to achieve a perforated membrane of a grid, net or filigree type of silhouette pattern, the holes of whatever shape forming the transparent areas. The holes may be formed after printing or otherwise applying the required design “blocked out” or the required design may be produced after the holes have, been formed . . . ” Such perforated sheets or membranes imaged with a design may then be formed within or attached to a transparent sheet. Precision Studios of Stoke-on-Trent, UK, a division of Josiah Wedgwood & Sons Ltd. developed the method according to GB2165292 of first printing ceramic ink transfer carrier material, the transfer carrier material and the printed ceramic ink then being perforated together. Samples of toughened glass panels produced by such printed then perforated ceramic ink transfers were first made public bearing the Precision Studios'name in 1996. U.S. Pat. No. 5,830,529 (Ross) also discloses the method of perforating ceramic decals.
Other methods of utilising perforated materials to form partially imaged panels according to GB2 165 292, for example, for advertising on the windows of buses, taxis and retail outlets, typically manufactured by screen or digitally printing a design on a pre-perforated self-adhesive vinyl assembly, have been in widespread use since 1993. U.S. Pat. No. 5,609,938 (Shields) and U.S. Pat. No. 5,773,110 (Shields) both disclose a perforated clear facestock material and an additional solid backing liner which have been incorporated into products made and sold since September 1993 by Visual Technologis, Inc. of Pineville, N.C. USA, as evidenced and available for public inspection in the reissue of U.S. Pat. No. 5,609,938 (Shields) file Ser. No. 09/267,025 at the U.S. Patent and Trademark Office
GB2 118 096 (Hill and Yule), GB2 165 292 and U.S. Pat. No. 5,830,529 also disclose the edge alignment of superimposed layers, by means of applying layers to a projecting surface which automatically aligns their perimeters with the downstand edge of the projecting surface, and by means of a recessed surface which automatically aligns the layer perimeters to the upstanding edge.
International Patent Application WO98/43832 (Pearson) discloses the partial imaging of a transparent glass substrate by means of a perforated decal on a carrier. In PCT/GB98/00803, the word “perforated” is used to mean having a plurality of holes, not limited to a process of piercing through a material.
PCT/GB98/00803 discloses and claims the methodology of heat release transfers being automatically applied and also discloses three methods of forming vision control panels using an unperforated ceramic heat release transfer. One of these methods is the combination of method 2 in GB2 165 292 with previously known ceramic ink heat release transfer technology. Another is GB2 165 292 method 4 (stencil method) in conjunction with previously known ceramic ink heat release transfer technology, which is used to transfer ink layers over a stencil printed directly onto a glass sheet. In addition, WO98/43832 discloses the selective application of a heat release layer to a ceramic ink heat release transfer carrier, intended to facilitate the selective application of ceramic ink to a sheet of glass as a means of manufacturing vision control panels. In all the methods of WO98/43832, the ceramic ink is removed from the transfer carrier by means of a uniform layer of heat-activated adhesive.
Contra Vision Supplies Ltd of Stockport, UK and Precision Studios developed a proce

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Partial imaging of a substrate with superimposed layers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Partial imaging of a substrate with superimposed layers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Partial imaging of a substrate with superimposed layers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3356875

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.