Parasiticidal formulation and a method of making this...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S052000, C514S355000, C514S367000, C514S393000, C514S394000, C514S395000, C054S050000, C054S050000, C054S050000, C054S050000, C054S050000, C054S050000

Reexamination Certificate

active

06340672

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable.
BACKGROUND OF THE INVENTION
The present invention relates to a parasiticidal formulation and a method for making the formulation. More specifically, the present invention relates to a parasiticidal formulation for use in veterinary applications.
Currently, closantel, a parasiticidal agent, is available in an injectable form or as an oral drench. One disadvantage with these closantel parasiticidal formulations is that they are not available in a pour-on form.
Ivermectin, another parasiticidal agent which kills different parasites from closantel, may be purchased in an injectable form, as a pour-on formulation, in a paste form, as an oral drench, or in a chewable form. The ivermectin injectable formulations currently available contain glycerol formal or propylene glycol to dissolve the ivermectin. The ivermectin pour-on formulations currently available contain isopropyl alcohol or a mixture of caprylic acids and caprylic esters to dissolve the ivermectin.
One disadvantage with both injectable and pour-on ivermectin formulations currently available is that none of these formulations will dissolve closantel and like parasiticidal formulations in concentrations sufficient to be useful. Another disadvantage with the ivermectin pour-on formulations available is that they only have up to a 0.5% weight per volume (w/v) concentration of ivermectin.
Additionally, a disadvantage with parasiticidal formulations currently available is that closantel and ivermectin are not available in a single formulation, and therefore a broadened spectrum of parasite protection is not available in a single formulation. Still further, parasiticidal agents, including, but not limited to closantel and ivermectin, cannot be combined in pour-on formulations currently available in a manner that keeps both parasiticidal agents in solution.
In order to overcome these disadvantages, a parasiticidal formulation containing an effective solvent delivery system that allows one or more parasiticidal agents to dissolve, especially closantel and ivermectin in combination, is needed. In addition, the resulting parasiticidal formulation should be usable in a pour-on or an injectable form. Still further, the solvent delivery system should be able to hold larger amounts of parasiticidal agents than prior formulations.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a parasiticidal formulation containing more than one parasiticidal agent or a larger amount of a single parasiticidal agent than conventional formulations that may be a administered as a pour-on product in order to facilitate easier administration of the parasiticidal formulation.
It is another object of the present invention to provide a parasiticidal formulation that contains at least two different parasiticidal agents so as to obtain a broadened spectrum of parasite protection.
It is a further object of the present invention to provide a method of making a parasiticidal formulation that achieves the foregoing objects.
Still another object of the present invention is to provide a method for administering a parasiticidal formulation that achieves the foregoing objects.
According to the present invention, the foregoing and other objects are achieved by a pour-on or an injectable parasiticidal formulation that includes a mixture of a pyrrolidone solvent, a bridging solvent and at least one parasiticidal agent. One or more parasiticidal agents may be included in the formulation. Preferably, the formulation contains both closantel and ivermectin. Another aspect of the present invention is a method of making this parasiticidal formulation. This method includes mixing a pyrrolidone solvent and abridging solvent to form a solvent solution and adding one or more parasiticidal agents to the solvent solution. A further aspect of the present invention is a method for administering the parasiticidal formulation of the present invention to an animal. This method of administration includes providing the parasiticidal formulation described above and applying this formulation to the skin of an animal, wherein the formulation may be absorbed through the animal's skin.
Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned from the practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The parasiticidal formulation of the present invention is an effective pour-on or injectable formulation for protection against parasites. The formulation includes a solvent delivery system and one or more parasiticidal agents. The solvent delivery system includes a mixture of a pyrrolidone solvent and a bridging solvent. This mixture provides a unique solvent system which allows one or more parasiticidal agents to dissolve effectively when added to the solvents.
The pyrrolidone solvent that may be used in the formulation of the present invention includes, but is not limited to, N-methyl-2-pyrrolidone, 2-pyrrolidone, N,5-dimethyl-2-pyrrolidone, 3,3-dimethyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-ethoxy-2-pyrrolidone, N-ethylene-2-pyrrolidone, 1-pyrrolidone, or any combinations thereof. Preferably, the pyrrolidone solvent is N-methyl-2-pyrrolidone or 2-pyrrolidone. The pyrrolidone solvent desirably is present in the solvent delivery system in an amount effective, in combination with a bridging solvent, for dissolving a therapeutic amount of one or more parasiticidal agents.
The bridging solvent that may be used in the formulation of the present invention includes, but is not limited to, diethylene glycol monobutyl ether (DGME), benzyl benzoate, isopropyl alcohol, xylenes, or any combinations thereof. If xylenes are used, usually a combination of ortho-xylene, meta-xylene and para-xylene is used. The bridging solvent aids in dissolving the parasiticidal agents and acts to carry the formulation through an animal's skin once it is applied to the skin. If 2-pyrrolidone is used as the pyrrolidone solvent, then preferably xylenes are used as the bridging solvent. If a pyrrolidone solvent other than 2-pyrrolidone is used, then the preferred bridging solvent is DGME. In any event, the solvent delivery system must include an amount of the bridging solvent that is effective, in combination with the pyrrolidone solvent, to dissolve a therapeutic amount of the active parasiticidal agent or agents.
The combination of a pyrrolidone solvent and a bridging solvent to form the unique solvent delivery system of the present invention allows one or more parasiticidal agents to dissolve. The solvent system dissolves the parasiticidal agents and keeps them in solution. The solvent delivery system also functions to transport one or more parasiticidal agents into an animal so that the agent or agents may interact therapeutically with parasites in the animal.
The parasiticidal agents that may be used in the formulation of the present invention include, but are not limited to, closantel, oxyclozanide, praziquantel, pyrantels, tetrahydropyrimidines, probenzimidazoles, imidazothiazoles, macrocyclic lactones, benzimadizoles, tetramisoles, avermectins, epsiprantel, morantel, febantel, netobimin, clorsulon, bunamidine, nitroscanate, melarsomine, amidines, benzoyl urea derivatives, carbamates, nitroquanidines, pyrazoles, pyrethrins, pyrethroids, pyriproxyfen, acylhydrazones and any combinations thereof.
An example of a pyrantel that may be used is pyrantel pamoate. Examples of benzimadizoles that may be used include, but are not limited to, mebendazole, oxibendazole, fenbendazole, oxfendazole, triclabendazole, flubendazole, ricobendazole, thiabendazole, and albendazole. Preferably, if

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Parasiticidal formulation and a method of making this... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Parasiticidal formulation and a method of making this..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Parasiticidal formulation and a method of making this... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2824717

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.