Parametric virtual speaker and surround-sound system

Electrical audio signal processing systems and devices – One-way audio signal program distribution

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C381S079000

Reexamination Certificate

active

06577738

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to sound systems, and more particularly to sound systems which utilize a parametric sound source to generate a virtual speaker from a reflecting surface.
2. Prior Art
The evolution of sound reproduction began with a simple sound source such as a horn loudspeaker acoustically coupled to a rotating cylinder which carried physical impressions of sound scribed into its surface. The emitted sound was very localized, propagating from the horn with a directional aspect oriented along the horn throat axis. As speakers became more sophisticated, stereophonic features were added in combination with use of multiple speaker systems, generating left and right or side-to-side dynamics to sound reproduction. Modern surround-sound systems capitalize on diverse speakers to generate both stereophonic output, as well as synchronized shifting of isolated sounds to individual speakers disposed around the listener. In this manner, for example, sound associated with motion picture display can develop greater realism by coordinating specific events on the screen with shifting sound propagation around the room from a variety of directions.
Because of the physiology of the ear, human hearing is amazingly capable of assigning a directional aspect to sound. This ability provides a continuous flow of information to the brain, supplying data which is assimilated in defining an individual's position and environment within a three-dimensional framework. Modern surround-sound systems simulate a desired three-dimensional environment by directing sound to the listener from various orientations, including front, side, back, floor and ceiling propagation. Such sounds include speaking voices from persons at differing positions, surrounding environmental sounds of nature such as water movement, wind, thunder, birds, animals, etc. Action scenes include synthesized audio effects for emphasizing mood dynamics of anxiety, fear, surprise, and pleasure, as well as sound effects for crash scenes, explosions, and a myriad of visual objects whose display on the screen is brought to life with multidirectional sound effects.
In order to implement effective surround-sound experiences as described above, conventional sound systems include many speakers, positioned around a room perimeter, including floor and ceiling. Typically, low frequency range woofers are located at the front of the room, or under the floor. Because these low frequency speakers have less directionality, their placement at a particular location in a room is not problematic. Indeed, the low range sound is difficult to ascribe to any direction when the room is reasonably small in dimension. Because of the large size of conventional dynamic speakers, location in the front of the room is generally more practical.
With high range frequencies, the directional aspect of sound propagation is enhanced. Tweeters, for example, can readily be detected as to source or orientation. Surround-sound systems supply these higher frequencies from smaller speakers which are dispersed at the sides and back of the room, enabling their beaming properties to simulate sound emanating from multiple directions as if in a natural environment. Physical displacement and positioning at wall and ceiling locations are facilitated by the smaller size of this speaker component.
Parametric speakers are also known for their highly directional character. U.S. Pat. No. 4,823,908 of Tanaka et. al. discloses that the derivation of audio output from a modulated ultrasonic carrier provides a more focused directivity, even at lower frequency ranges.
FIG. 2
of the Tanaka '908 patent shows a conventional parametric system
8
oriented directly toward a listener
9
, but suggests that ultrasonic db levels capable of generating desirable audio output could be at dangerous levels for human safety. Acoustic filters
10
and
20
are therefore applied along the audio path between the emitter and listener for substantially eliminating the ultrasonic component of the parametric output. Although reflective plates
19
are disclosed in Tanaka et. al. '908 (i.e. FIG.
16
), their purpose appears to be lengthening the acoustic path and changing the direction of propagation of the ultrasonic and/or audio frequencies. Accordingly, these prior teachings with respect to parametric speakers do not point to significant differences in audio output between direct projection of parametric output toward a listener and indirect propagation of such audio output to a listener by reflection; except, perhaps, with respect to diminished or enhanced db level.
In accordance with this understanding, prior art systems for developing perception of sound sources from different directions would necessitate the placement of a speaker along a particular orientation and at a predetermined location. In order to obtain multiple directions as part of a surround-sound experience, multiple speakers (dynamic, electrostatic, parametric, etc.) at differing locations would be required. Therefore, the need to disperse speaker systems at a variety of positions within the listener's experience will generally necessitate more complex technical implementation. Speaker wires must extend from sound source to speaker hardware. For in-home theaters, retrofit of wiring may be expensive and/or detrimental to room decor. Efforts to avoid unsightly wiring may include FM wireless transmission systems which are very expensive and often problematic in operation. Even where new construction allows prewiring of surround-sound systems, limited adaptability exists because the speakers are fixed at certain locations, and are not subject to rapid relocation consonant with displacement of the sound. If a sense of movement is desired based on shifting a sound source, many speakers are required along the direction of movement, with complex circuitry to synchronize sound through the desired speaker devices. This fact simply increases the cost and complexity of developing more extensive surround-sound systems, particularly where multiple speakers and associated wiring and additional circuitry are required.
In short, the excessive cost and complexity of dynamic movement of the sound source has discouraged general commercial application beyond conventional surround-sound systems in environments other than public move theaters.
SUMMARY OF THE INVENTION
Briefly and in one general aspect, the present invention is realized in a method for providing multiple speaker locations around a listener. The method comprises the steps of a) generating primary audio output by emitting audio compression waves from audio speakers at the sound source which are oriented along a primary audio path directly toward the listener; b) generating secondary audio output from at least one virtual speaker remote from and electronically unconnected with the sound source by emitting ultrasonic sound from at least one parametric speaker and oriented toward at least one reflective surface within the room which is remote from the sound source and not along the primary audio path, thereby indirectly generating sound from the reflective surface which is perceived as originating at the virtual speaker; and c) synchronizing the primary audio output of the audio speakers with the secondary audio output from the at least one parametric speaker such that the listener hears a coordinated enveloping sound experience from multiple directions.
In a further more detailed aspect, the present invention is further represented in an embodiment for providing multiple speaker locations around a listener. The device includes frontal audio speakers coupled to the sound source which are adapted for orientation along a primary audio path directly toward the listener, and at least one parametric speaker positioned and oriented toward at least one reflective surface within the room which is remote from the sound source and not along the primary audio path. The at least one parametric speaker provides nonfrontal audio output for de

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Parametric virtual speaker and surround-sound system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Parametric virtual speaker and surround-sound system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Parametric virtual speaker and surround-sound system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3094604

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.